The poor often behave in less capable ways, which can further perpetuate poverty. We hypothesize that poverty directly impedes cognitive function and present two studies that test this hypothesis. First, we experimentally induced thoughts about finances and found that this reduces cognitive performance among poor but not in well-off participants. Second, we examined the cognitive function of farmers over the planting cycle. We found that the same farmer shows diminished cognitive performance before harvest, when poor, as compared with after harvest, when rich. This cannot be explained by differences in time available, nutrition, or work effort. Nor can it be explained with stress: Although farmers do show more stress before harvest, that does not account for diminished cognitive performance. Instead, it appears that poverty itself reduces cognitive capacity. We suggest that this is because poverty-related concerns consume mental resources, leaving less for other tasks. These data provide a previously unexamined perspective and help explain a spectrum of behaviors among the poor. We discuss some implications for poverty policy.
Knowledge about regularities in the environment can be used to facilitate perception, memory, and language acquisition. Given this usefulness, we hypothesized that statistically structured sources of information receive attentional priority over noisier sources, independent of their intrinsic salience or goal relevance. We report three experiments that support this hypothesis. Experiment 1 shows that regularities bias spatial attention: Visual search was facilitated at a location containing temporal regularities, even though these regularities did not predict target location, timing, or identity. Experiments 2 and 3 show that regularities bias feature attention: Attentional capture doubled in magnitude when singletons appeared, respectively, in a color or dimension with temporal regularities among task-irrelevant stimuli. Prioritization of the locations and features of regularities is not easily accounted for in the conventional dichotomy between stimulus-driven and goal-directed attention. This prioritization may in turn promote further statistical learning, helping the mind to acquire knowledge about stable aspects of the environment.
COVID-19 has affected every healthcare system around the world. In New South Wales (NSW), Australia, healthcare activity was subdued in the first half of 2020, as healthcare-seeking behaviour changed and service provision was modified to manage system capacity • The disruption COVID-19 has caused to provision of healthcare may have both positive and negative health consequences. Ongoing monitoring of these potential consequences will be required
Recent research has studied how resource scarcity draws attention and creates cognitive load. As a result, scarcity improves some dimensions of cognitive function, while worsening others. Still, there remains a fundamental question: how does scarcity influence the content of cognition? In this article, we find that poor individuals (i.e., those facing monetary scarcity) see many everyday experiences through a different lens. Specifically, thoughts about cost and money are triggered by mundane circumstances, they are difficult to suppress, they change mental associations, and they interfere with other experiences. We suggest that the poor see an economic dimension to many everyday experiences that to others may not appear economic at all.
Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g(-1)), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.