Low electronic conductivity and large volume changes during the (de)lithiation process are the two main challenges for ZnO anode materials used for lithium‐ion batteries (LIB). Here, a free‐standing, flexible, and binder‐free LIB electrode composed of ZnO nanorods and carbon cloth (CC) is fabricated. This is then decorated with Ag nanoparticles and finally coated by an amorphous carbon layer to form the hybrid electrode: (C@(Ag&ZnO)). The voids among the nanorods are sufficient to accommodate the volume expansion of the ZnO while the flexible CC, which acts as the current collector, relieves the volume change‐induced stress. The Ag nanoparticles are effective in improving the conductivity. This composite electrode shows excellent LIB performance with a stable long cycling life over 500 cycles with a reversible capacity of 1093 mAh g−1 at a current density of 200 mA g−1. It also shows good rate performance with reversible capacity of 517 mAh g−1 under a high‐current density of 5000 mA g−1. In situ Raman spectroscopy is conducted to investigate the contributions of the amorphous carbon layer to the capacity of the whole electrode and the synergy between the CC and ZnO nanorods.
ZnCo2O4 has attracted extensive attention as a bimetallic transition metal oxide anode material for lithium-ion batteries (LIBs) with high capacity. However, there is still a long way to go to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.