Enzyme-triggered macrocyclization and in situ self-assembly of small molecules into nanoparticles has shown promise to design activatable probes for molecular imaging. However, controlling macrocyclization and self-assembly to concurrently augment positron emission tomography (PET) and photoacoustic (PA) signals for bimodality imaging is challenging. Herein, we report the engineering of a triazole-IR780 fluorophore as a versatile macrocyclization scaffold for controlling in situ selfassembly and design a caspase-3-activatable PA/PET bimodal probe ([ 18 F]-IR780-1) for in vivo imaging of tumor apoptosis. By leveraging the high-sensitivity whole-body imaging signals offered by PET with the high-resolution imaging signals offered by PA, [ 18 F]-IR780-1 can provide a promising tool for the early evaluation of antitumor efficacy, helpful for optimizing the therapeutic protocol for patients. This scaffold may be adopted to design other activatable bimodal probes for in vivo imaging.
Enzyme-triggered macrocyclization and in situ self-assembly of small molecules into nanoparticles has shown promise to design activatable probes for molecular imaging. However, controlling macrocyclization and self-assembly to concurrently augment positron emission tomography (PET) and photoacoustic (PA) signals for bimodality imaging is challenging. Herein, we report the engineering of a triazole-IR780 fluorophore as a versatile macrocyclization scaffold for controlling in situ selfassembly and design a caspase-3-activatable PA/PET bimodal probe ([ 18 F]-IR780-1) for in vivo imaging of tumor apoptosis. By leveraging the high-sensitivity whole-body imaging signals offered by PET with the high-resolution imaging signals offered by PA, [ 18 F]-IR780-1 can provide a promising tool for the early evaluation of antitumor efficacy, helpful for optimizing the therapeutic protocol for patients. This scaffold may be adopted to design other activatable bimodal probes for in vivo imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.