In silico drug target identification, which includes many distinct algorithms for finding disease genes and proteins, is the first step in the drug discovery pipeline. When the 3D structures of the targets are available, the problem of target identification is usually converted to finding the best interaction mode between the potential target candidates and small molecule probes. Pharmacophore, which is the spatial arrangement of features essential for a molecule to interact with a specific target receptor, is an alternative method for achieving this goal apart from molecular docking method. PharmMapper server is a freely accessed web server designed to identify potential target candidates for the given small molecules (drugs, natural products or other newly discovered compounds with unidentified binding targets) using pharmacophore mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore database (namely PharmTargetDB) annotated from all the targets information in TargetBank, BindingDB, DrugBank and potential drug target database, including over 7000 receptor-based pharmacophore models (covering over 1500 drug targets information). PharmMapper automatically finds the best mapping poses of the query molecule against all the pharmacophore models in PharmTargetDB and lists the top N best-fitted hits with appropriate target annotations, as well as respective molecule’s aligned poses are presented. Benefited from the highly efficient and robust triangle hashing mapping method, PharmMapper bears high throughput ability and only costs 1 h averagely to screen the whole PharmTargetDB. The protocol was successful in finding the proper targets among the top 300 pharmacophore candidates in the retrospective benchmarking test of tamoxifen. PharmMapper is available at http://59.78.96.61/pharmmapper.
Supplementary data are available at Bioinformatics online.
PharmMapper is a web server for drug target identification by reversed pharmacophore matching the query compound against an annotated pharmacophore model database, which provides a computational polypharmacology prediction approach for drug repurposing and side effect risk evaluation. But due to the inherent nondiscriminative feature of the simple fit scores used for prediction results ranking, the signal/noise ratio of the prediction results is high, posing a challenge for predictive reliability. In this paper, we improved the predictive accuracy of PharmMapper by generating a ligand-target pairwise fit score matrix from profiling all the annotated pharmacophore models against corresponding ligands in the original complex structures that were used to extract these pharmacophore models. The matrix reflects the noise baseline of fit score distribution of the background database, thus enabling estimation of the probability of finding a given target randomly with the calculated ligand-pharmacophore fit score. Two retrospective tests were performed which confirmed that the probability-based ranking score outperformed the simple fit score in terms of identification of both known drug targets and adverse drug reaction related off-targets.
Live migration of virtual machine (VM) provides a significant benefit for virtual server mobility without disrupting service. It is widely used for system management in virtualized data centers. However, migration costs may vary significantly for different workloads due to the variety of VM configurations and workload characteristics. To take into account the migration overhead in migration decisionmaking, we investigate design methodologies to quantitatively predict the migration performance and energy cost. We thoroughly analyze the key parameters that affect the migration cost from theory to practice. We construct two application-oblivious models for the cost prediction by using learned knowledge about the workloads at the hypervisor (also called VMM) level. This should be the first kind of work to estimate VM live migration cost in terms of both performance and energy in a quantitative approach. We evaluate the models using five representative workloads on a Xen virtualized environment. Experimental results show that the refined model yields higher than 90% prediction accuracy in comparison with measured cost. Model-guided decisions can significantly reduce the migration cost by more than 72.9% at an energy saving of 73.6%.
VANETs (Vehicle Ad hoc NETworks) are highly mobile wireless ad hoc networks targeted to support vehicular safety and other commercial applications. Conventional routing protocols in MANETs (Mobile Ad hoc NETworks) are unable to fully address the unique characteristics in vehicular networks. On the other hand, some characteristics in VANETs, like mobility constraints and predicable mobility, can benefit routing in vehicular networks. It is known that vehicles tend to move more regularly. We propose a new position-based routing strategy with the consideration of nodes moving direction for VANETs, called DGR (Directional Greedy Routing). Considering the fact that vehicles often have predicable mobility, we propose PDGR (Predictive Directional Greedy Routing) to forward packet to the most suitable next hop based on both current and predicable future situations. We evaluate the performance of the solutions via simulations with realistic mobility models in open environments. Simulation results show that our solutions outperform existing ones in terms of packet delivery ratio, end-to-end delay, and routing overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.