Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.
Highlights d Mitochondria-located circRNA SCAR inhibits mROS output and fibroblast activation d circRNA SCAR shuts down mPTP by binding to ATP5B d Lipid-induced ER stress impairs PGC-1a-mediated circRNA SCAR expression d Mitochondria-specific delivery of circRNA SCAR alleviates metaflammation in vivo
Background
The aim of this study was to investigate the effect of virtual reality (VR) technology on balance and gait in patients with Parkinson’s disease (PD).
Material/Methods
The study design was a single-blinded, randomized, controlled study. Twenty-eight patients with PD were randomly divided into the experimental group (n=14) and the control group (n=14). The experimental group received VR training, and the control group received conventional physical therapy. Patients performed 45 minutes per session, 5 days a week, for 12 weeks. Individuals were assessed pre- and post-rehabilitation with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Third Part of Unified Parkinson’s Disease Rating Scale (UPDRS3), and Functional Gait Assessment (FGA).
Results
After treatment, BBS, TUGT, and FGA scores had improved significantly in both groups (P<0.05). However, there was no significant difference in the UPDRS3 between the pre- and post-rehabilitation data of the control group (P>0.05). VR training resulted in significantly better performance compared with the conventional physical therapy group (P<0.05).
Conclusions
The results of this study indicate that 12 weeks of VR rehabilitation resulted in a greater improvement in the balance and gait of individuals with PD when compared to conventional physical therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.