Nonsyndromic orofacial cleft (NSOFC) is a severe birth defect that occurs early in embryonic development and includes the subtypes cleft palate only (CPO), cleft lip only (CLO) and cleft lip with cleft palate (CLP). Given a lack of specific genetic factor analysis for CPO and CLO, the present study aimed to dissect the landscape of genetic factors underlying the pathogenesis of these two subtypes using 6,986 cases and 10,165 controls. By combining a genome-wide association study (GWAS) for specific subtypes of CPO and CLO, as well as functional gene network and ontology pathway analysis, we identified 18 genes/loci that surpassed genome-wide significance (P < 5 × 10−8) responsible for NSOFC, including nine for CPO, seven for CLO, two for both conditions and four that contribute to the CLP subtype. Among these 18 genes/loci, 14 are novel and identified in this study and 12 contain developmental transcription factors (TFs), suggesting that TFs are the key factors for the pathogenesis of NSOFC subtypes. Interestingly, we observed an opposite effect of the genetic variants in the IRF6 gene for CPO and CLO. Moreover, the gene expression dosage effect of IRF6 with two different alleles at the same single-nucleotide polymorphism (SNP) plays important roles in driving CPO or CLO. In addition, PAX9 is a key TF for CPO. Our findings define subtypes of NSOFC using genetic factors and their functional ontologies and provide a clue to improve their diagnosis and treatment in the future.
Large-scale COVID-19 vaccinations are currently underway in many countries in response to the COVID-19 pandemic. Here, we report, besides generation of neutralizing antibodies, consistent alterations in hemoglobin A1c, serum sodium and potassium levels, coagulation profiles, and renal functions in healthy volunteers after vaccination with an inactivated SARS-CoV-2 vaccine. Similar changes had also been reported in COVID-19 patients, suggesting that vaccination mimicked an infection. Single-cell mRNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) before and 28 days after the first inoculation also revealed consistent alterations in gene expression of many different immune cell types. Reduction of CD8+ T cells and increase in classic monocyte contents were exemplary. Moreover, scRNA-seq revealed increased NF-κB signaling and reduced type I interferon responses, which were confirmed by biological assays and also had been reported to occur after SARS-CoV-2 infection with aggravating symptoms. Altogether, our study recommends additional caution when vaccinating people with pre-existing clinical conditions, including diabetes, electrolyte imbalances, renal dysfunction, and coagulation disorders.
Elongation and elevation of palatal shelves, mainly caused by proliferation and extra-cellular matrix synthesis of palatal mesenchymal cells (PMCs), are essential for normal palatal development. Transforming growth factor beta (TGFB) pathway could induce proliferation inhibition and collagen synthesis in PMCs. Recent studies found that miRNA-17-92 (miR-17-92) cluster, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a, expressed in the 1st bronchial arch of mouse embryos during the period of palatal shelf elongation and elevation, and directly targeted TGFB pathway in cancer cell lines. Whether miR-17-92 cluster expresses and targets TGFB pathway in PMCs has not yet been studied. Using quantitative real-time RT-PCR, we found that miR-17-92 expressed in PMCs and decreased from embryonic day (E) 12 to E14 in palatal shelves. MTT assay and Western blot showed that miR-17-92 inhibited TGFB1 induced proliferation inhibition and collagen synthesis in PMCs by decreasing TGFBR2, SMAD2, and SMAD4 protein level. Further luciferase assay showed that miR-17 and miR-20a directly targeted 3′UTR of TGFBR2, and that miR-18a directly targeted 3′UTR of SMAD2 and SMAD4. We thus conclude that miR-17-92 cluster could inhibit TGFB pathway induced proliferation inhibition and collagen synthesis in PMCs by directly targeting TGFBR2, SMAD2, and SMAD4.
Spindle and kinetochore-related complex subunit 3 (SKA3) is a component of the spindle and kinetochore-related complexes and is essential for accurate timing of late mitosis. However, the relationship between SKA3 and hepatocellular carcinoma (HCC) has not yet been fully elucidated. Gene expression omnibus (GEO) (GSE62232, GSE45436, GSE6764, and GSE36376) and The Cancer Atlas (TCGA) datasets were analyzed to identify differential expression genes. Cell proliferation ability was analyzed using Cell Counting Kit-8 (CCK8) assay and plate clone formation assay, while scratch wound healing assay and transwell assay were used to analyze cell invasion. The role of SKA3 in vivo was explored using subcutaneous xenotransplantation model and lung metastasis model. Bioinformatics analysis found that hepatocellular carcinoma patients with high levels of expression of SKA3 have a poor prognosis. Similarly, immunohistochemical staining of 236 samples of tumors also found higher SKA3 expression in them, than in adjacent normal liver tissues. Significant levels of inhibition of in vivo and in vitro tumor proliferation and invasion result from the downregulation of SKA3. Mechanistically, SKA3 was found to affect tumor progression through the cell cycle and P53 signaling pathway as shown by the gene enrichment analysis (GSEA). G2/M phase arrest and severe apoptosis was also found to result from SKA3 knockdown, as shown by the inhibition of CDK2/p53 phosphorylation together with downregulation of BAX/Bcl-2 expression in HCC cells. Overall, these findings uncover the role of SKA3 in regulating the apoptosis and proliferation of hepatocellular carcinoma cells. This study was able to uncover new information on the tumorigenesis mechanism in hepatocellular carcinoma.
Periodontitis is a common type of inflammatory bone loss and a risk factor for systemic diseases. The pathogenesis of periodontitis involves inflammatory dysregulation, which represents a target for new therapeutic strategies to treat periodontitis. After establishing the correlation of cell-free DNA (cfDNA) level with periodontitis in patient samples, we test the hypothesis that the cfDNA-scavenging approach will benefit periodontitis treatment. We create a nanoparticulate cfDNA scavenger specific for periodontitis by coating selenium-doped hydroxyapatite nanoparticles (SeHANs) with cationic polyamidoamine dendrimers (PAMAM-G3), namely G3@SeHANs, and compare the activities of G3@SeHANs with those of soluble PAMAM-G3 polymer. Both G3@SeHANs and PAMAM-G3 inhibit periodontitis-related proinflammation in vitro by scavenging cfDNA and alleviate inflammatory bone loss in a mouse model of ligature-induced periodontitis. G3@SeHANs also regulate the mononuclear phagocyte system in a periodontitis environment, promoting the M2 over the M1 macrophage phenotype. G3@SeHANs show greater therapeutic effects than PAMAM-G3 in reducing proinflammation and alveolar bone loss in vivo. Our findings demonstrate the importance of cfDNA in periodontitis and the potential for using hydroxyapatite-based nanoparticulate cfDNA scavengers to ameliorate periodontitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.