This paper develops an integrated framework to forecast the volatility of crude oil prices by considering the impacts of extreme events (structural breaks). The impacts of extreme events are vital to improving prediction accuracy. Aiming to demonstrate the crude oil price fluctuation and the impacts of external events, this paper employs the Complementary Ensemble Empirical Mode Decomposition (CEEMD). It decomposes the crude oil price into some constituents at various frequencies to extract a market fluctuation, a shock from extreme events, and a long-term trend. The shock from extreme events is found to be the most crucial element in deciding the crude oil prices. Then we combine the Iterative Cumulative Sum of Squares (ICSS) test with the Chow test to get the structural breaks and analyze the extreme event impacts. Finally, this paper combines the structural breaks, the Autoregressive Integrated Moving Average model (ARIMA), and the Support Vector Machine (SVM) to make a forecast of the crude oil prices. The empirical process proves that the CEEMD-ARIMA-SVM model with structural breaks performs the best when compared with the other ARIMA-type models and SVM-type models. The framework offers an insightful view to help decision-makers and can be used in many areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.