Combining the advantages of low-power consumption of static random access memory (SRAM) with high stability and nonvolatile of resistive memory (RRAM), an improved 8T2R nonvolatile SRAM (nvSRAM) memory cell was proposed in this paper. In order to solve the problem that data cannot be stored when SRAM is powered off, RRAM technology was introduced into SRAM to realize an SRAM with nonvolatile function. The differential mode was adopted to improve the data restoration speed. Meanwhile, a pre-decoding technology was proposed to realize fast address decoding, and a voltage-mode sensitive amplifier was used to achieve fast amplification of two bit lines, so as to improve the reading speed of the memory. An 8kb nvSRAM was implemented with a CMOS 28 nm 1P9M process. The simulation results show that when the power supply voltage was 0.9 V, the static/read/write noise margin was 0.35 V, 0.16 V and 0.41 V, respectively. The data storage time was 0.21 ns, and restoration time was 0.18 ns. The time for the whole system to read 1 bit of data was 5.2 ns.
Combining with a static random-access memory (SRAM) and resistive memory (RRAM), an improved 8T2R nonvolatile SRAM (nvSRAM) memory cell is proposed in this study. With differential mode, a pair of 1T1R RRAM is added to 6T SRAM storage node. By optimizing the connection and layout scheme, the power consumption is reduced and the data stability is improved. The nvSRAM memory cell is realized with UMC CMOS 28 nm 1p9m process. When the power supply voltage is 0.9 V, the static noise/read/write margin is 0.35 V, 0.16 V, and 0.41 V, respectively. The data storage/restoration time is 0.21 ns and 0.18 ns, respectively, with an active area of 0.97 μm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.