G-quadruplex (G4) structures formed by guanine-rich nucleic acids are implicated in essential physiological and pathological processes and serve as important drug targets. The genome-wide detection of G4s in living cells is important for exploring the functional role of G4s but has not yet been achieved due to the lack of a suitable G4 probe. Here we report an artificial 6.7 kDa G4 probe (G4P) protein that binds G4s with high affinity and specificity. We used it to capture G4s in living human, mouse, and chicken cells with the ChIP-Seq technique, yielding genome-wide landscape as well as details on the positions, frequencies, and sequence identities of G4 formation in these cells. Our results indicate that transcription is accompanied by a robust formation of G4s in genes. In human cells, we detected up to >123 000 G4P peaks, of which >1/3 had a fold increase of ≥5 and were present in >60% promoters and ∼70% genes. Being much smaller than a scFv antibody (27 kDa) or even a nanobody (12–15 kDa), we expect that the G4P may find diverse applications in biology, medicine, and molecular devices as a G4 affinity agent.
G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4–forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS–SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS–SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor–binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.