Recently, electromyogram (EMG) has been proposed for addressing some key limitations of current biometrics. Wrist-worn wearable sensors can provide a non-invasive method for acquiring EMG signals for gesture recognition or biometric applications. EMG signals contain individuals' information and can facilitate multi-length codes or passwords (for example, by performing a combination of hand gestures). However, current EMGbased biometric research has two critical limitations: small subject-pool for analysis and limited to single-session datasets. In this study, wrist EMG data were collected from 43 participants over three different days (Days 1, 8, and 29) while performing static hand/wrist gestures. Multi-day analysis involving training data and testing data from different days was employed to test the robustness of the EMG-based biometrics. The multi-day authentication resulted in a median equal error rate (EER) of 0.039 when the code is unknown, and an EER of 0.068 when the code is known to intruders. The multi-day identification achieved a median rank-5 accuracy of 93.0%. With intruders, a threshold-based identification resulted in a median rank-5 accuracy of 91.7% while intruders were denied access at a median rejection rate of 71.7%. These results demonstrated the potential of EMG-based biometrics in practical applications and bolster further research on EMG-based biometrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.