This paper proposes a new stochastic optimizer called the Colony Predation Algorithm (CPA) based on the corporate predation of animals in nature. CPA utilizes a mathematical mapping following the strategies used by animal hunting groups, such as dispersing prey, encircling prey, supporting the most likely successful hunter, and seeking another target. Moreover, the proposed CPA introduces new features of a unique mathematical model that uses a success rate to adjust the strategy and simulate hunting animals’ selective abandonment behavior. This paper also presents a new way to deal with cross-border situations, whereby the optimal position value of a cross-border situation replaces the cross-border value to improve the algorithm’s exploitation ability. The proposed CPA was compared with state-of-the-art metaheuristics on a comprehensive set of benchmark functions for performance verification and on five classical engineering design problems to evaluate the algorithm’s efficacy in optimizing engineering problems. The results show that the proposed algorithm exhibits competitive, superior performance in different search landscapes over the other algorithms. Moreover, the source code of the CPA will be publicly available after publication.
Sine cosine algorithm (SCA) is a new meta-heuristic approach suggested in recent years, which repeats some random steps by choosing the sine or cosine functions to find the global optimum. SCA has shown strong patterns of randomness in its searching styles. At the later stage of the algorithm, the drop of diversity of the population leads to locally oriented optimization and lazy convergence when dealing with complex problems. Therefore, this paper proposes an enriched SCA (ASCA) based on the adaptive parameters and chaotic exploitative strategy to alleviate these shortcomings. Two mechanisms are introduced into the original SCA. First, an adaptive transformation parameter is proposed to make transformation more flexible between global search and local exploitation. Then, the chaotic local search is added to augment the local searching patterns of the algorithm. The effectiveness of the ASCA is validated on a set of benchmark functions, including unimodal, multimodal, and composition functions by comparing it with several well-known and advanced meta-heuristics. Simulation results have demonstrated the significant superiority of the ASCA over other peers. Moreover, three engineering design cases are employed to study the advantage of ASCA when solving constrained optimization tasks. The experimental results have shown that the improvement of ASCA is beneficial and performs better than other methods in solving these types of problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.