Fe(3)O(4)-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe(3)O(4) nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe(3)O(4)-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe(3)O(4)-graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh g(-1) with no noticeable fading for up to 100 cycles in the voltage range of 0.0-3.0 V. The superior performance of Fe(3)O(4)-graphene is clearly established by comparison of the results with those from bare Fe(3)O(4). The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe(3)O(4).
photocopying process took nearly a century from 1843 until the early 1940s, while the detailed crystal structure of PB was first confirmed as cubic by Ludi and co-workers in 1977, which is now widely accepted. [6] Remarkably, the past four decades have witnessed the exploration of PB in more and more new and totally different, but very promising application areas, reaching from rechargeable batteries [7] to catalysis [8] and biosensors, [9] from optically switchable films in electrochromic devices (smart windows) [10] to a helpful nanomaterial for cancer therapy. [11] Due to their excellent redox activity, low cost, and highly reversible phase transitions during the insertion/extraction process of certain cations, PB and PBAs have also been widely investigated as promising active materials for energy storage devices, especially for commercial sodium-ion batteries (SIBs) beyond other batteries system (potassium-ion batteries, [12,13] lithium-ion batteries (LIBs), [14] lithium-sulfur batteries (LI-S), [15] lithium-air batteries, [16] zinc-air batteries, [17] solid-state batteries, [18] etc.) in large-scale stationary energy storage systems in the near future. [19,20] The chemical formulas of PBAs could be represented asHere, A represents a single alkali metal or alkaline earth metal, or a mixture of these metals, while M 1 and M 2 typically are transition metals bonded by CN − bonds to form a 3D open structure with the capability to host element(s) A inside the crystal structure. □ represents the vacancy that is caused by the loss of an M 2 (CN) 6 group and the occupation by coordination water and interstitial water, the species and ionic radii of which are shown in Figure 2a. [21] With the different species and various ratios of A/M 1 /M 2 , the number of family members could reach more than 100, sharing different crystal phases, including monoclinic, [22,23] rhombohedral, [24,25] cubic, [26,27] tetragonal, [28] hexagonal, [29] etc. According to the amount of redox-active sites for battery application, PB and PBAs could be divided into dual-electron transfer type (DE-PBAs: M 1 and M 2 = Mn, Fe, Co) and single-electron transfer type (SE-PBAs: M 1 = Zn, Ni and M 2 = Fe, Co, Mn) with theoretical specific capacity of 170 and 85 mAh g −1 , respectively. [21] Taking the high average voltage and capacity of the DE-PBAs into consideration, they are promising and competitive, even to the level of LiFePO 4 (a well-known cathode material for the LIBs), for high energy density devices (≈450 Wh kg −1 on the material level). On the other hand, the negligible structural distortion and high conductivity of SE-PBAs make them desirable choices for fast-charging and long-life devices. [20,30] Prussian blue analogues (PBAs) have attracted wide attention for their application in the energy storage and conversion field due to their low cost, facile synthesis, and appreciable electrochemical performance. At the present stage, most research on PBAs is focused on their material-level optimization, whereas their properties in practical b...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.