Transformer models coupled with Simplified Molecular Line Entry System (SMILES) have recently proven to be a powerful combination for solving challenges in cheminformatics. These models, however, are often developed specifically for a single application and can be very resource-intensive to train. In this work we present Chemformer model – a Transformerbased model which can be quickly applied to both sequence-to-sequence and discriminative cheminformatics tasks. Additionally, we show that self-supervised pre-training can improve performance and significantly speed up convergence on downstream tasks. On direct synthesis and retrosynthesis prediction benchmark datasets we publish state-of-the-art results for top- 1 accuracy. We also improve on existing approaches for a molecular optimisation task and show that Chemformer can optimise on multiple discriminative tasks simultaneously. Models, datasets and code will be made available after publication.
A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here, we focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards desirable properties. This task can be framed as a machine translation problem in natural language processing, where in our case, a molecule is translated into a molecule with optimized properties based on the SMILES representation. Typically, chemists would use their intuition to suggest chemical transformations for the starting molecule being optimized. A widely used strategy is the concept of matched molecular pairs where two molecules differ by a single transformation. We seek to capture the chemist’s intuition from matched molecular pairs using machine translation models. Specifically, the sequence-to-sequence model with attention mechanism, and the Transformer model are employed to generate molecules with desirable properties. As a proof of concept, three ADMET properties are optimized simultaneously: logD, solubility, and clearance, which are important properties of a drug. Since desirable properties often vary from project to project, the user-specified desirable property changes are incorporated into the input as an additional condition together with the starting molecules being optimized. Thus, the models can be guided to generate molecules satisfying the desirable properties. Additionally, we compare the two machine translation models based on the SMILES representation, with a graph-to-graph translation model HierG2G, which has shown the state-of-the-art performance in molecular optimization. Our results show that the Transformer can generate more molecules with desirable properties by making small modifications to the given starting molecules, which can be intuitive to chemists. A further enrichment of diverse molecules can be achieved by using an ensemble of models.
Molecular optimization aims to improve the drug profile of a starting molecule. It is a fundamental problem in drug discovery but challenging due to (i) the requirement of simultaneous optimization of multiple properties and (ii) the large chemical space to explore. Recently, deep learning methods have been proposed to solve this task by mimicking the chemist’s intuition in terms of matched molecular pairs (MMPs). Although MMPs is a widely used strategy by medicinal chemists, it offers limited capability in terms of exploring the space of structural modifications, therefore does not cover the complete space of solutions. Often more general transformations beyond the nature of MMPs are feasible and/or necessary, e.g. simultaneous modifications of the starting molecule at different places including the core scaffold. This study aims to provide a general methodology that offers more general structural modifications beyond MMPs. In particular, the same Transformer architecture is trained on different datasets. These datasets consist of a set of molecular pairs which reflect different types of transformations. Beyond MMP transformation, datasets reflecting general structural changes are constructed from ChEMBL based on two approaches: Tanimoto similarity (allows for multiple modifications) and scaffold matching (allows for multiple modifications but keep the scaffold constant) respectively. We investigate how the model behavior can be altered by tailoring the dataset while using the same model architecture. Our results show that the models trained on differently prepared datasets transform a given starting molecule in a way that it reflects the nature of the dataset used for training the model. These models could complement each other and unlock the capability for the chemists to pursue different options for improving a starting molecule.
The energy transmitted directly during thermal exposure as well as the stored energy that is continuously discharged from the heated fabrics after exposure can contribute to burn injuries. This study examined the effect of heat exposure time on the transmitted and the stored energy through multilayer protective fabric systems. The influences of the exposure duration on the amount of transmitted energy, the amount of stored energy, and also the action period of the stored energy release were discussed. A newly developed index was introduced to evaluate the thermal protection levels. The analyses demonstrated that the amount of transmitted energy increased continuously with an increase of exposure time; however, the amount of stored energy released to the sensor was limited in the process of exposure time increase. The maximum amount of stored energy was about 14.0 J/cm2 for the selected fabrics. As the exposure time was further increased the stored energy decreased to the range from 8.5 J/cm2 to 13.7 J/cm2. The grade of the thermal protection against a second-degree burn injury decreased with the increase of the exposure duration. By using the introduced index, the thermal performance estimate values could be determined, thus avoiding use of the iterative techniques suggested by ASTM F2703.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.