regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has different features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°-70°E in southwestern Yunnan to near EW in southeastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsistent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.upper mantle anisotropy, SKS wave, fast-wave direction, crust-mantle coupling, lithospheric deformation Since the 1990s, the broadband digital technology has made great progress in the research of the Earth sciences. The seismograms recorded by the broadband seismometers deployed in the world are widely applied to the study of seismology, deep structure and geodynamics. In this paper, we focus on the mantle anisotropy and related geodynamic issues. Generally speaking, the mantle anisotropy is determined by the lattice-preferred orientation of olivine crystals as a result of the mantle deformation. There are various causes resulting in the mantle deformation. Among them, the plate motion is a direct cause. The size and direction of the mantle anisotropy strongly depend on the velocity of the plate motion. In the various subjects of recent studies on geodynamics, the anisotropy in the mantle is one of effective ways to probe the complicated deep structure beneath the continent and its evolution, the crust-mantle coupling deformation, etc. [1,2] .
Understanding the capillary filling behaviors in nanopores is crucial for many science and engineering problems. Compared with the classical Bell-Cameron-Lucas-Washburn (BCLW) theory, anomalous coefficient is always observed because of the increasing role of surfaces. Here, a molecular kinetics approach is adopted to explain the mechanism of anomalous behaviors at the molecular level; a unified model taking account of the confined liquid properties (viscosity and density) and slip boundary condition is proposed to demonstrate the macroscopic consequences, and the model results are successfully validated against the published literature. The results show that (1) the effective viscosity induced by the interaction from the pore wall, as a function of wettability and the pore dimension (nanoslit height or nanotube diameter), may remarkably slow down the capillary filling process more than theoretically predicted. (2) The true slip, where water molecules directly slide on the walls, strongly depends on the wettability and will increase as the contact angle increases. In the hydrophilic nanopores, though, the magnitude may be comparable with the pore dimensions and promote the capillary filling compared with the classical BCLW model. (3) Compared with the other model, the proposed model can successfully predict the capillary filling for both faster or slower capillary filling process; meanwhile, it can capture the underlying physics behind these behaviors at the molecular level based on the effective viscosity and slippage. (4) The surface effects have different influence on the capillary filling in nanoslits and nanotubes, and the relative magnitude will change with the variation of wettability as well as the pore dimension.
Summary The increasing activities in tight reservoir exploitation through fractured wells have attracted interests of pressure-transient analysis (PTA) for well-performance evaluation. The production rates of different fractures were assumed to be equal in previous models. However, different fractures have unequal contributions to the total-gas-production rate because of the differences of fracture scale (e.g., half-length, height), heterogeneity of gas saturation, formation damage, and fracture closure. This paper considers the effect of unequal gas-production rate of each fracture (UGPREF) on pressure-transient behaviors, and develops a semianalytical methodology to diagnose the specific locations of underperforming fractures through PTA by use of bottomhole-pressure (BHP) data. First, new semianalytical solutions of a multifractured horizontal well (MFHW) in a tight gas reservoir are derived on the basis of the Green function (Gringarten and Ramey 1973) and Newman product method (Newman 1936). Second, the model is validated by comparison with the numerical model in KAPPA Ecrin (Saphir) software (Essca 2011). Third, type curves are developed, and sensitivity analysis is further investigated. Results show that there exist clear distinctions among these type curves between equal gas-production rate of each fracture (EGPREF) and UGPREF. The early radial flow is distinguishable and behaves as a horizontal line with the value of 0.5/N* (N* = N for EGPREF, N*≠N for UGPREF) in the pseudopressure-derivative curves when the interferences between fractures do not overlap this period. If the early-radial flow was mistakenly regarded as pseudoradial flow, the interpreted permeability would be N* times smaller than the accurate result. Furthermore, the methodology is applied to a field case of the Daniudi tight gas reservoir in the Ordos Basin, which illustrates its physical consistency and practicability to diagnose the specific locations of underperforming hydraulic fractures through pressure-history matching. It also provides feasible references for reservoir engineers in well-performance evaluation and field strategy (e.g., refracturing, acidizing, or other stimulation treatments) to enhance hydrocarbon production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.