With the rapid development of industrialization and urbanization, soil contamination with heavy metal (HM) has gradually become a global environmental problem. Lead (Pb) is one of the most abundant toxic metals in soil and high concentrations of Pb can inhibit plant growth, harm human health, and damage soil properties, including quality and stability. Arbuscular mycorrhizal fungi (AMF) are a type of obligate symbiotic soil microorganism forming symbiotic associations with most terrestrial plants, which play an essential role in the remediation of HM-polluted soils. In this study, we investigated the effects of AMF on the stability of soil aggregates under Pb stress in a pot experiment. The results showed that the hyphal density (HLD) and spore density (SPD) of the AMF in the soil were significantly reduced at Pb stress levels of 1000 mg kg−1 and 2000 mg kg−1. AMF inoculation strongly improved the concentration of glomalin-related soil protein (GRSP). The percentage of soil particles >2 mm and 2–1 mm in the AMF-inoculation treatment was higher than that in the non-AMF-inoculation treatment, while the Pb stress increased the percentage of soil particles <0.053 mm and 0.25–0.53 mm. HLD, total glomalin-related soil protein (T-GRSP), and easily extractable glomalin-related soil protein (EE-GRSP) were the three dominant factors regulating the stability of the soil aggregates, based on the random forest model analysis. Furthermore, the structural equation modeling analysis indicated that the Pb stress exerted an indirect effect on the soil-aggregate stability by regulating the HLD or the GRSP, while only the GRSP had a direct effect on the mean weight diameter (MWD) and geometric mean diameter (GMD). The current study increases the understanding of the mechanism through which soil degradation is caused by Pb stress, and emphasizes the crucial importance of glomalin in maintaining the soil-aggregate stability in HM-contaminated ecosystems.
Soil aggregation and aggregate-associated carbon (C) play an essential function in soil health and C sequestration. Arbuscular mycorrhizal fungi (AMF) are considered to be primary soil aggregators due to the combined effect of extraradical hyphae and glomalin-related soil proteins (GRSPs). However, the effects of diversity and network complexity of AMF community on stability of soil aggregates and their associated C under long-term climate change (CC) and land-use conversion (LUC) in relatively high-latitude regions are largely unexplored. Therefore, an 8-year soil plot (with a 30-year cropping history) transplantation experiment was conducted to simulate CC and LUC from cropland to fallow land. The results showed that Glomus, Paraglomus, and Archaeospora were the most abundant genera. The diversity of AMF community in fallow land was higher than cropland and increased with increasing of mean annual temperature (MAT) and mean annual precipitation (MAP). Fallow land enhanced the network complexity of AMF community. The abundance families (Glomeraceae and Paraglomeraceae) exhibited higher values of topological features and were more often located in central ecological positions. Long-term fallow land had a significantly higher hyphal length density, GRSP, mean weight diameter (MWD), geometric mean diameter (GMD), and C concentration of GRSP (C-GRSP) than the cropland. The soil aggregate associated soil organic carbon (SOC) was 16.8, 18.6, and 13.8% higher under fallow land compared to that under cropland at HLJ, JL, and LN study sites, respectively. The structural equation model and random forest regression revealed that AMF diversity, network complexity, and their secreted GRSP mediate the effects of CC and LUC on C-GRSP and aggregate-associated SOC. This study elucidates the climate sensitivity of C within GRSP and soil aggregates which response symmetry to LUC and highlights the potential importance of AMF in C sequestration and climate change mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.