Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GAs) and auxins (1-naphthaleneacetic acid, NAA) remain unknown. Here, we systematically identified and characterized the expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We explored the function of circRNAs, including their roles in regulating microRNA (miRNA)-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs. Finally, we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA. Collectively, our study provides insights into the biogenesis, function, and miRNA-mediated degradation of circRNAs in moso bamboo.
Circular RNAs are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GA) and auxins (NAA) remain unknown. Here, we systematically identified and characterized expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We determined details regarding the function of circRNAs, including their roles in regulating microRNA-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect microRNA-mediated cleavage of circRNAs. Finally, we present a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with gibberellins (GA) and auxins (NAA). Collectively, our study uncovers important features of circRNAs including overall characteristics, biogenesis, function, and microRNA-mediated degradation of circRNAs in moso bamboo.
Application of agricultural waste such as rapeseed meal (RM) is regarded as a sustainable way to improve soil phosphorus (P) availability by direct nutrient supply and stimulation of native phosphate-solubilizing microorganisms (PSMs) in soils. However, exploration of the in situ microbial P solubilizing function in soils remains a challenge. Here, by applying both phenotype-based single-cell Raman with D 2 O labeling (Raman-D 2 O) and genotype-based high-throughput chips targeting carbon, nitrogen and P (CNP) functional genes, the effect of RM application on microbial P solubilization in three typical farmland soils was investigated. The abundances of PSMs increased in two alkaline soils after RM application identified by single-cell Raman D 2 O. RM application reduced the diversity of bacterial communities and increased the abundance of a few bacteria with reported P solubilization function. Genotypic analysis indicated that RM addition generally increased the relative abundance of CNP functional genes. A correlation analysis of the abundance of active PSMs with the abundance of soil microbes or functional genes was carried out to decipher the linkage between the phenotype and genotype of PSMs. Myxococcota and C degradation genes were found to potentially contribute to the enhanced microbial P release following RM application. This work provides important new insights into the in situ function of soil PSMs. It will lead to better harnessing of agricultural waste to mobilize soil legacy P and mitigate the P crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.