Melatonin (MT) can protect plants against abiotic stress. In order to explore whether melatonin can improve photosynthetic function under NaCl stress, Solanum lycopersicum L. cv. Liaoyuanduoli were exposed to 150 mmol L −1 NaCl stress with or without pretreatment with 150 μmol L −1 melatonin. The results showed that NaCl stress can lead to reduced chlorophyll content, lower photosynthetic function, increased reaction oxygen species (ROS) levels, and decreased PSII activity. These changes were mainly due to the reduction in oxygen-evolving complex (OEC) activity on the donor side of PSII and the blockage of electron transfer from Q A to Q B on receptor side of PSII. The donor side of PSII was more sensitive to NaCl stress relative to the receptor side of PSII. Interestingly, application of MT enhanced tomato NaCl tolerance. MT reduced the production of ROS by balancing the distribution of photosynthetic electron flux, facilitated the repair of PSII by maintaining the abundance of Psb O and D1, and promoting the ability of the donor and acceptor sides of PSII to deliver electrons. MT also enhanced the scavenging ability of ROS by stimulating the activity of enzymes involved in the AsA-GSH cycle.
Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3‐hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H‐OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence‐related gene that positively regulates aging. MT inhibited the expression of the senescence‐related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.