In the current intranet environment, information is becoming more readily accessed and replicated across a wide range of interconnected systems. Anyone using the intranet computer may access content that he does not have permission to access. For an insider attacker, it is relatively easy to steal a colleague’s password or use an unattended computer to launch an attack. A common one-time user authentication method may not work in this situation. In this paper, we propose a user authentication method based on mouse biobehavioral characteristics and deep learning, which can accurately and efficiently perform continuous identity authentication on current computer users, thus to address insider threats. We used an open-source dataset with ten users to carry out experiments, and the experimental results demonstrated the effectiveness of the approach. This approach can complete a user authentication task approximately every 7 seconds, with a false acceptance rate of 2.94% and a false rejection rate of 2.28%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.