Bulk Ti-6Al-4V alloys have been fabricated by selective laser melting (SLM) in three recipes with different combinations of powder sizes. Combinatorial effects of initial gas-atomized powder sizes on microstructure and corrosion properties of SLM-ed Ti-6Al-4V alloys have been investigated by optical microscopy, X-ray diffraction, electrochemical measurements and surface free energy. The SLM-ed Ti-6Al-4V alloys are composed of acicular α' martensite and α phases. Many pinhole defects and twin boundaries exist in the SLM-ed Ti-6Al-4V alloys. According to electrochemical tests and surface free energy calculation, the SLM-ed Ti-6Al-4V alloys with 0 – 53 μm powders have the most positive corrosion potential, the lowest current density and the smallest surface free energy of 20.89 mJ m2. The passive film of SLM-ed Ti-6Al-4V alloys with 0 – 53 μm powders has superior protection ability due to their large thickness. The carrier concentration of SLM-ed Ti-6Al-4V alloys with 0 – 53 μm powders is the lowest by the Mott-Schottky curves. The SLM-ed samples with contact angles higher than 90º are hydrophobic, but the small contact angle of 46.98º reflects the hydrophilic features of as-rolled Ti-6Al-4V alloys. The combinatorial recipe of SLM-ed Ti-6Al-4V alloys with 0 – 53 μm powders is optimal for improvements on the corrosion resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.