This paper describes the synthesis of new nanocomposite nanoparticles that consist of polymer coated γ-Fe2O3 superparamagnetic cores and CdSe/ZnS quantum dots (QDs) shell. A single layer of QDs was bound to the surface of thiol-modified magnetic beads through the formation of thiol−metal bonds to form luminescent/magnetic nanocomposite particles. Transmission electron microscopy (TEM) and energy disperse spectroscopy (EDS) were used to characterize the size, size distribution, and composition of the luminescent/magnetic nanoparticles. Their average diameter was 30 nm with a size variation of ±15%. The nanoparticles were modified with carboxylic groups to increase their miscibility in aqueous solution. A 3-fold decrease in the luminescence quantum yield of the luminescent/magnetic particles and a slight blue shift in their emission peaks compared to individual luminescent QDs were observed. However, the particles were bright and were easily observed using a conventional fluorescence microscope. Additionally, no apparent broadening of the luminescence peak of the QDs could be seen. The luminescent/magnetic nanoparticles were easily separated from solution by magnetic decantation using a permanent magnet. The new particles could be used in a variety of bioanalytical assays involving luminescence detection and magnetic separation. To demonstrate their utility we immobilized anticycline E antibodies on their surface and used the antibody coated particles to separate MCF-7 breast cancer cells from serum solutions. Anticycline E antibodies bind specifically to cycline, a protein which is specifically expressed on the surface of breast cancer cells. The separated breast cells were easily observed by fluorescence imaging microscopy due to the strong luminescence of the luminescent/magnetic nanocomposite particles.
The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin’s potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. From the Clinical Editor Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated.
Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.