Flow characteristics and heat transfer performances in a rectangular microchannel with dimples/protrusions are studied numerically in this research. The height and the width of the microchannel is 200 μm and 50 μm, respectively. The dimple/protrusion diameter is 100 μm, and the depth is 20 μm. The effects of Reynolds number, streamwise pitch, and arrangement pattern are examined. The numerical simulations are conducted using water as the coolant with the Reynolds number ranging from 100 to 900. The results show that dimple/protrusion technique in mcirochannel has the potential to provide heat transfer enhancement with low pressure penalty. The normalized Nusselt number is within the range from 1.12 to 4.77, and the corresponding normalized friction factor is within the range from 0.94 to 2.03. The thermal performance values show that the dimple + protrusion cases perform better than the dimple + smooth cases. The flow characteristics of the dimples/protrusions in microchannel are similar to those in conventional channel. Furthermore, from the viewpoint of energy saving, dimples/protrusions in microchannel behave better than those in conventional channel. Also from the viewpoint of field synergy principle, the synergy of the dimple + protrusion cases are much better than the dimple + smooth cases. Moreover, the synergy becomes worse with the increase in the Reynolds number and decrease in the streamwise pitch.
Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled SurfaceBased on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for D/ D = 0.318. 0.5. 1.045; ô/D = 0.1, 0.2, 0.3; Rej = 5000. 10.000,23,000, were investigated for the first time. The distance between jet nozzle and plate was fi.xed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of D/D = 0.318 and 0.5. the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dy/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the DjiD = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.