Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
The multiple types of high throughput genomics data create a potential opportunity to identify driver pattern in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. However, it is a great challenging work to integrate omics data, including somatic mutations, Copy Number Variations (CNVs) and gene expression profiles, to distinguish interactions and regulations which are hidden in drug response dataset of ovarian cancer. To distinguish the candidate driver genes and the corresponding driving pattern for resistant and sensitive tumor from the heterogeneous data, we combined gene co-expression modules and mutation modulators and proposed the identification driver patterns method. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles via weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNVs and somatic mutations, and a mutation network is constructed from this mutation matrix. The candidate modulators are selected from the significant genes by clustering the vertex of the mutation network. At last, regression tree model is utilized for module networks learning in which the achieved gene modules and candidate modulators are trained for the driving pattern identification and modulator regulatory exploring. Many of the candidate modulators identified are known to be involved in biological meaningful processes associated with ovarian cancer, which can be regard as potential driver genes, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.