Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio-inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ 1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, consequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems.
Aim: The purpose of this study was to compare clinicopathological features of patients with non-schistosomal and schistosomal colorectal cancer to explore the effect of schistosomiasis on colorectal cancer (CRC) patients' clinical outcomes. Methods: Three hundred fifty-one cases of CRC were retrospectively analyzed in this study. Survival curves were constructed by using the Kaplan-Meier (K-M) method. Univariate and multivariate Cox proportional hazard regression models were performed to identify associations with outcome variables. Results: Colorectal cancer patients with schistosomiasis (CRC-S) were significantly older (P < 0.001) than the patients without schistosomiasis (CRC-NS). However, there were no significant differences between CRC-S and CRC-NS patients in other clinicopathological features. Schistosomiasis was associated with adverse overall survival (OS) upon K-M analysis (P = 0.0277). By univariate and multivariate analysis, gender (P = 0.003), TNM stage (P < 0.001), schistosomiasis (P = 0.025), lymphovascular invasion (P = 0.030), and lymph nodes positive for CRC (P < 0.001) were all independent predictors in the whole cohort. When patients were stratified according to clinical stage and lymph node metastasis state, schistosomiasis was also an independent predictor in patients with stage III-IV tumors and in patients with lymph node metastasis, but not in patients with stage I-II tumors and in patients without lymph node metastasis. Conclusion: Schistosomiasis was significantly correlated with OS, and it was an independent prognostic factor for OS in the whole cohort. When patients were stratified according to clinical stage and lymph node metastasis state, schistosomiasis was still an independently unfavorable prognosis factor for OS in patients with stage III-IV tumors or patients with lymph node metastasis.
Glioma is among the most formidable brain cancers due to location in the brain. Cholera toxin subunit B (CTB) is investigated to facilitate multifunctional glioma-targeted drug delivery by targeting the glycosphingolipid GM1 expressed in the blood-brain barrier (BBB), neovasulature, and glioma cells. When modified on the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CTB-NPs), CTB fully retains its bioactivity after 24 h incubation in the fresh mouse plasma. The formed protein corona (PC) of CTB-NP and plain PLGA nanoparticles (NP) after incubation in plasma is analyzed using liquid chromatography tandem massspectrometry (nano-LC-MS/MS). CTB modification does not alter the protein components of the formed PC, macrophage phagocytosis, or pharmacokinetic profiles. CTB-NP can efficiently penetrate the in vitro BBB model and target glioma cells and human umbilical vascular endothelial cells. Paclitaxel is loaded in NP (NP/PTX) and CTB-NP (CTB-NP/PTX), and their antiglioma effects are assessed in nude mice bearing intracranial glioma. CTB-NP/PTX can efficiently induce apoptosis of intracranial glioma cells and ablate neovasulature in vivo, resulting in significant prolongation of survival of nude mice bearing intracranial glioma (34 d) in comparison to those treated with NP/PTX (29 d), Taxol (24 d), and saline (21 d). The present study suggests a potential multifunctional glioma-targeted drug delivery system enabled by cholera toxin subunit B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.