Poly(acrylic acid) (PAA)-grafted cellulose copolymer beads were synthesized and tested in vitro as an adsorbent for selective removal of low-density lipoprotein (LDL) from human plasma. The copolymers were prepared by graft copolymerization of acrylic acid (AA) onto porous cellulose beads using cerium ammonium nitrate (CAN) as an initiator. The effect of initiator concentration, monomer amount and reaction time on the grafting was examined, and it revealed that the extent of grafting could be controlled by setting the appropriate reaction conditions. In vitro batch-wise adsorption tests were conducted to evaluate the lipoprotein sorption properties of the resulted copolymer beads, and the effect of grafting conditions on the adsorption performance was investigated. It was shown that the binding capacities of the best adsorbent derived from the appropriate reaction conditions could reach 4.96 mg/g total cholesterol (TC) and 4.46 mg/g LDL cholesterol (LDL-C) from human plasma, respectively, without significantly affecting the contents of beneficial constitutes such as high-density lipoprotein (HDL) and total proteins (TP). The influences of plasma amount and adsorption period on the adsorption properties were also determined and analyzed. It appears that this kind of copolymer is worthy of being developed as an alternative LDL adsorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.