This article studies the fixed-time robust control problem for the longitudinal dynamics of hypersonic vehicles in the presence of parametric uncertainties, external disturbances and input constraints. First, the dynamic model is transformed into two fourth-order integral chain subsystems by feedback linearization technology. Four novel fast integrating sliding surfaces are designed for each subsystem to guarantee the fixed time convergence of the errors and the derivatives. The double power reaching law is investigated to accelerate the convergence of sliding surfaces. Furthermore, the fixed-time disturbance observer technique is applied to estimate the lumped disturbance precisely. A novel fixed-time anti-saturation auxiliary system is designed to tackle the saturation caused by constraints of actuators. Then the semi-global uniform boundedness of the closed-loop system in a fixed time is proved by Lyapunov’s stability theory. Finally, comparison simulation experiments with the existing higher order sliding mode control method are carried out to verify the proposed method’s effectiveness and superiority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.