Background: Low-pass genome sequencing (GS) detects clinically significant copy number variants (CNVs) in prenatal diagnosis. However, detection at improved resolutions leads to an increase in the number of CNVs identified, increasing the difficulty of clinical interpretation and management.Methods: Trio-based low-pass GS was performed in 315 pregnancies undergoing invasive testing. Rare CNVs detected in the fetuses were investigated. The characteristics of rare CNVs were described and compared to curated CNVs in other studies.Results: A total of 603 rare CNVs, namely, 597 constitutional and 6 mosaic CNVs, were detected in 272 fetuses (272/315, 86.3%), providing 1.9 rare CNVs per fetus (603/315). Most CNVs were smaller than 1 Mb (562/603, 93.2%), while 1% (6/603) were mosaic. Forty-six de novo (7.6%, 46/603) CNVs were detected in 11.4% (36/315) of the cases. Eighty-four CNVs (74 fetuses, 23.5%) involved disease-causing genes of which the mode of inheritance was crucial for interpretation and assessment of recurrence risk. Overall, 31 pathogenic/likely pathogenic CNVs were detected, among which 25.8% (8/31) were small (<100 kb; n = 3) or mosaic CNVs (n = 5).Conclusion: We examined the landscape of rare CNVs with parental inheritance assignment and demonstrated that they occur frequently in prenatal diagnosis. This information has clinical implications regarding genetic counseling and consideration for trio-based CNV analysis.
Background: Tandem mass spectrometry (TMS)-based newborn screening has been proven successful as one of the public healthcare programs, although the practicability has not yet been specifically addressed. Methods: Sixty residual dried blood spot (DBS) specimens from confirmation/diagnosis-insufficient cases discovered by TMS screening were analyzed by targeted next generation sequencing (TNGS) assay. Results: In total, 26, 11, 9, and 14 cases were diagnosed as positive, high risk, low risk, and negative, respectively. Conclusions: Applying the DBS-based TNGS assay for the accurate and rapid diagnosis of inborn errors of metabolism (IEMs) is feasible, competent, and advantageous, enabling a simplified TMS screening-based, TNGS assay-integrated newborn screening scheme highlighting an efficient, executable, and one-step screening-to-diagnosis workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.