A series of sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) with different degree of sulfonation (DS) are prepared by the postsulfonation of PESEKK using chlorosulfonic acid as sulfonating agent and concentrated sulfuric acid as solvent. The chemical structures of the polymers are analyzed by the proton nuclear magnetic resonance. The thermal properties of the SPESEKK show that they are greatly influenced by the DS value and sulfonation time. The water uptake, proton conductivity, and Ion exchange capacity values increase as the sulfonation time increasing. The methanol permeability of the SPE-SEKK in the range of 7.02 Â 10 À8 to 4.477 Â 10 À7 cm 2 s À1 , is one or two orders of magnitude lower than that of Nafion 115. The morphology of the SPESEKK membranes is investigated by scanning electron microscope.
Well-defined poly(N-isopropyl acrylamide) (PNIPAAm) brushes on commercial hydrophobic poly(vinylidene fluoride) (PVDF) microfiltration membrane surfaces were prepared, via direct atom transfer radical polymerization (ATRP) with the secondary fluorinated site of PVDF as initiator and water as solvent at 80°C. The effect of solvents on the ATRP was studied in detail. The water as reaction solvent was in favor of surface-initiated ATRP of N-isopropyl acrylamide (NIPAAm) from secondary fluoride of PVDF membranes. The chemical composition and structure of the modified PVDF membrane surfaces were determined by attenuated total reflectance (ATR) Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface and cross-section morphology of membranes were studied by scanning electron microscopy (SEM). The pore sizes of the pristine PVDF membrane and the PNIPAAm-grafted PVDF membranes were measured using micro-image analysis and process software. The introduction of the well-defined PNIPAAm on the PVDF membrane gave rise to hydrophilicity. Water contact angles of PVDF membranes reduced after the surface grafting of PNIPAAm. Water fluxes and protein solution permeation experiments revealed that the PNIPAAm-grafted PVDF membranes exhibited temperature-responsive permeability. The unique microstructure of PNIPAAm brushes facilitated hydrophilicity below the lower critical solution temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.