Gap-graded soil-rock mixtures (SRMs), composed of coarse-grained rocks and fine-grained soils particles, are very inhomogeneous materials and widely encountered in geoengineering. In geoengineering applications, it is necessary to know the compaction characteristics in order to estimate the minimum void ratio of gap-graded SRMs. In this paper, the void ratios of compacted SRMs as well as the particle breakage during vibrating compaction were investigated through a series of vibrating compaction tests. The test results show that gap-graded SRMs may reach a smaller void ratio than the SRM with a continuous gradation under some circumstances. When the particles in a gap interval play the role of filling components, the absence of them will increase the void ratio of the SRM. The particle breakage of gap-graded SRMs is more prominent than the SRM with continuous gradation on the whole, especially at the gap interval of 5-20 mm. Based on the test results, a minimum void ratio prediction model incorporating particle breakage during compaction is proposed. The developed model is evaluated by the compaction test results and its validation is discussed.
Observing the fragmentation of individual particles within granular assemblies is a subject of evident theoretical and practical importance. A new technique using dyed gypsum particles (DGPs) to match the broken particles to their parents was adopted in this study. An image-based method of acquiring the shape information of particles from two orthogonal views was proposed. The mass survival probability and shape characteristics of the children particles were analyzed after a series of one-dimensional compression tests on the DGPs. It was found that medium-sized particles in the polydisperse samples underwent more breakage than the other particles, and this might have been attributed to the combined effects of the particle crushing strength and the coordination number. The shape evolution of broken particles and surviving particles showed opposite trends. As the particles after the test within a given size range consisted of both the broken and surviving particles, their overall shape characteristics did not show a consistent trend. Furthermore, individual particle crushing tests on the children particles suggested that the breakage-induced shape irregularity did not change the Weibull modulus, but had a substantial effect on the magnitude of the survival probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.