Controlling the electrical conductance and in particular the occurrence of quantum interference in single-molecule junctions through gating effects, has potential for the realization of highperformance functional molecular devices. In this work, we used an electrochemically-gated, mechanically-controllable break junction technique to tune the electronic behaviour of thiophene-based molecular junctions that show destructive quantum interference (DQI) features. By varying the voltage applied to the electrochemical gate at room temperature, we
We apply direct ink writing for the three-dimensional (3D) printing of polyaniline/reduced graphene oxide (PANI/RGO) composites with PANI/graphene oxide (PANI/GO) gel as printable inks. The PANI/GO gel inks for 3D printing are prepared via self-assembly of PANI and GO in a blend solvent of N-methyl-2-pyrrolidinone and water, and offer both shaping capability, self-sustainability, and electrical conductivity after reduction of GO. PANI/RGO interdigital electrodes are fabricated with 3D printing, and based on these electrodes, a planar solid-state supercapacitor is constructed, which exhibits high performance with an areal specific capacitance of 1329 mF cm. The approach developed in this work provides a simple, economic, and effective way to fabricate PANI-based 3D architectures, which leads to promising application in future energy and electric devices at micro-nano scale.
The experimental investigation of intermolecular charge transport in π‐conjugated materials is challenging. Herein, we describe the investigation of charge transport through intermolecular and intramolecular paths in single‐molecule and single‐stacking thiophene junctions by the mechanically controllable break junction (MCBJ) technique. We found that the ability for intermolecular charge transport through different single‐stacking junctions was approximately independent of the molecular structure, which contrasts with the strong length dependence of conductance in single‐molecule junctions with the same building blocks, and the dominant charge‐transport path of molecules with two anchors transited from an intramolecular to an intermolecular path when the degree of conjugation increased. An increase in conjugation further led to higher binding probability owing to the variation in binding energies, as supported by DFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.