Emerging stimuli-responsive composite probes active in the second nearinfrared window (NIR-II, 1000-1700 nm) hold vast potential for improving in vivo imaging performance with minimized noise interference. The interactions among external irradiation, shell species, and the emissive core are key factors in the design of smart structures. The external irradiation provides energy for shell species and the emissive core to generate intense NIR-II fluorescence signals, while the energy transfer process hinders NIR-II emission in the inner structure of smart composite probes. However, if pathophysiological stimuli interrupt the above processes, then NIR-II fluorescence signals are recovered. This review covers NIR-II imaging based on diverse smart composite NIR-II fluorescent probes responding to various biological stimuli, including ONOO − , overexpressed reactive sulfur species, abnormally expressed enzymes, and abnormal levels of physiological metabolites. Finally, to appreciate these advances, the challenges and perspectives of stimuliresponsive composite NIR-II probes are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.