A bottleneck in high-throughput nanomaterials discovery is the pace at which new materials can be structurally characterized. Although current machine learning (ML) methods show promise for the automated processing of electron diffraction patterns (DPs), they fail in high-throughput experiments where DPs are collected from crystals with random orientations. Inspired by the human decision-making process, a framework for automated crystal system classification from DPs with arbitrary orientations was developed. A convolutional neural network was trained using evidential deep learning, and the predictive uncertainties were quantified and leveraged to fuse multiview predictions. Using vector map representations of DPs, the framework achieves an unprecedented testing accuracy of 0.94 in the examples considered, is robust to noise, and retains remarkable accuracy using experimental data. This work highlights the ability of ML be used to accelerate experimental high-throughput materials data analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.