Background: Transbronchial lung biopsy (TBLB) of peripheral pulmonary lesions (PPLs) is usually performed for a definite diagnosis. Radial probe endobronchial ultrasonography is often acknowledged as a good guidance method for TBLB as it can help physicians confirm the lesions' position. It is also a non-invasive imaging diagnostic method. This clinical study was designed to evaluate the ability of radial endobronchial ultrasonography (R-EBUS) to differentiate benign from malignant predominant solid PPLs based on imaging features. Methods: Patients with predominant solid PPLs were enrolled in this study retrospectively. TBLB was performed using R-EBUS with or without other guidance techniques. One typical sonographic image and one video of each lesion were recorded for analysis. Six radial probe endobronchial ultrasonographic image features (size, shape, echogenicity, margin, blood vessel, and linear-discrete air bronchogram) were studied by ultrasonography specialists and physicians who were blinded to the final diagnosis. The sum score model of the combined predictive factors indicated the best diagnostic accuracies for predicting malignant PPLs. The model group results were used to establish the diagnostic standard for a verification group.Results: A total of 303 patients were enrolled in the model group from July 2018 to July 2019 at the Shanghai Chest Hospital (214 with malignant and 89 with benign lesions). The mean lesion long axis on computed tomographic images was 34.39±13.79 mm. There were significant statistical differences between benign and malignant lesions in the long axis, short axis, shape, margin, blood vessel, and linear-discrete air bronchogram assessed by radial endobronchial ultrasound. Long axis, lobulation, distinct but not sharp margin, absence of blood vessel, and absence of linear-discrete air bronchogram were good predictive factors of malignant lesions. A sum score model value of 79.54% of these combined factors indicated the best diagnostic accuracy for predicting malignant lesions. Eighty-seven patients were enrolled in the verification group from August to October 2019. The sum score model showed a diagnostic accuracy of 82.76%. Conclusions: Radial endobronchial ultrasonographic features can differentiate malignant from benign lesions and thus have potential diagnosis value in predominant solid PPLs.
Magnetic resonance imaging (MRI), as a diagnostic tool in tissue engineering, has received widespread attention because of its ability to consistently provide degradation and absorption of implants in vivo. For some specific human tissues and organs, such as nerves, muscles and myocardium, their regeneration requires tissue engineering scaffolds have a good electrical conductivity. Graphene oxide (GO) has been extensively studied as a conductive biomaterial having mechanical reinforcement. Based on the above, we propose an MRI conductive scaffold containing gelatin (Gel)/gelatin-polycaprolactone (Gel-PCL)/ultra-small paramagnetic iron oxide (USPIO)/graphene oxide (GO) (Gel/Gel-PCL/USPIO/GO). Their physical and chemical properties as well as biocompatibility are measured in vitro. The purpose of doping USPIO was developed for non-invasive monitoring of tissue engineered implants and tissue reconstruction. Functional modification of GO to match electrophysiological requirement. Co-culture with bone marrow mesenchymal stem cells showed good biocompatibility. Blood experiments have also demonstrated the feasibility of scaffolds as tissue engineered implants. The USPIO-labeled conductive scaffold, as an effective image-guided and electrically stimulating implant, appears to be a reconstruction platform for specific tissues and organs.
A highly sensitive method for the detection of blood leakage has been developed, and a practical sensor system for blood concentration measurement has been constructed. The present method is based on the attenuation of laser light by blood cells. The effects of the fluctuations of the incident laser light power are eliminated by normalizing the attenuated light intensity by the incident light intensity. A part of the incident laser light is reflected by a beam splitter mounted at the entrance of the test cell, of which the power is measured to provide base data for normalization. The optical path is extended to enhance sensitivity by using a pair of side mirrors. This multi-reflection method is very effective to increase sensitivity; the maximum sensitivity obtained for blood concentration is about 4 x 10-6 by volume, which is significantly higher than that of the conventional sensors.
The chit42 gene cloned from Metarhizium anisopliae lacks chitin-binding domain (chBD), which plays important roles in binding insoluble chitin. Five kinds of hybrid chitinase Trichoderma transformants were constructed in this study, where the chit42 gene was fused to chBDs derived from plant, bacterial, and insect sources. The transformant Mc4 harboring chBDs from bitter melon (Momordica charantia) displayed the highest chitinase activity among all chBDs. The chitinase activities of Mc4, chit42 Trichoderma transformant Mchit3, and wild-type strain T30 were 44.94, 32.48, and 12.38 U/mL, respectively. The mortality rate of corn borer larvae in Mc4 fermentation liquid treatment increased by 10% and 30% compared with Mchit3 and T30, respectively. The midgut microvilli and goblet cell microvilli of the corn borer larvae exhibited distinct pathological changes after 48 h of feeding in Mc4 treatment. Mc4 also exhibited the strongest antifungal activity against Fusarium verticillioides and Rhizoctonia solani.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.