Seed treatment with Trichoderma harzianum strain T22, which results in colonization of plant roots but little or no colonization of shoots or leaves, had substantial effects on growth of and disease expression in maize inbred line Mo17. Shoots and roots of 10-day-old seedlings grown in a sandy loam field soil were larger (roots were nearly twice as long) in the presence of T22 than in its absence. Both main and secondary roots were increased in size and area and the root hair area was greater with T22. However, root hair area per unit of root length was greater in control plants. Increased growth probably was due to direct stimulation of plant growth in addition to effects from biological control of deleterious microflora. Seedlings of Mo17 grown in autoclaved or mefenoxamtreated sandy loam field soil were larger than those produced in untreated soil. However, seedlings grown in the presence of T22, either in treated or untreated soil, were larger than those produced in its absence. Infestation of soil with Pythium ultimum had little effect upon growth of Mo17. The presence of T22 increased protein levels and activities of beta-1,3 glucanase, exochitinase, and endochitinase in both roots and shoots, even though T22 colonized roots well but colonized shoots hardly at all. With some enzymes, the combination of T22 plus P. ultimum gave the greatest activity. Plants grown from T22-treated seed had reduced symptoms of anthracnose following inoculation of leaves with Colletotrichum graminicola, which indicates that root colonization by T22 induces systemic resistance in maize.
Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on the photosynthetic capacity, water status, and K+/Na+ homeostasis lead to the improved growth performance and salt tolerance of black locust exposed to salt stress.
Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated soils.
Due to its efficient broad-spectrum antimicrobial activity, Trichoderma has been established as an internationally recognized biocontrol fungus. In this study, we found and identified a novel strain of Trichoderma asperellum, named GDFS1009. The mycelium of T. asperellum GDFS1009 exhibits a high growth rate, high sporulation capacity, and strong inhibitory effects against pathogens that cause cucumber fusarium wilt and corn stalk rot. T. asperellum GDFS1009 secretes chitinase, glucanase, and protease, which can degrade the cell walls of fungi and contribute to mycoparasitism. The secreted xylanases are good candidates for inducing plant resistance and enhancing plant immunity against pathogens. RNA sequencing (RNA-seq) and gas chromatography-mass spectrometry (GC-MS) showed that T. asperellum GDFS1009 produces primary metabolites that are precursors of antimicrobial compounds; it also produces a variety of antimicrobial secondary metabolites, including polyketides and alkanes. In addition, this study speculated the presence of six antimicrobial peptides via ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). Future studies should focus on these antimicrobial metabolites for facilitating widespread application in the field of agricultural bio-control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.