Temperature and light are the key factors that affect the quality of pumpkin rootstock seedlings’ growth process. Responses to temperature and light are an important basis for optimizing the greenhouse environment. In order to determine the quantitative effects of temperature and light on the growth and development of pumpkin (Cucurbita moschata cv. RTWM6018) rootstock seedlings, relationships between temperature, light, and pumpkin rootstock seedlings growth were established using regression analysis. The results indicated that the daily average temperature had a significant negative correlation with the development time of pumpkin rootstock seedlings, and the shoot dry weight of pumpkin rootstock seedlings increased within a certain range of the daily light integral (DLI). We established a prediction model of pumpkin rootstock seedling quality indicators (hypocotyl length, stem diameter, shoot dry weight, root dry weight, root shoot ratio, and seedling quality index) based on thermal effectiveness and photosynthetic photon flux density (TEP). The coefficient of determinations (R2) of the hypocotyl length and seedling quality index prediction models of pumpkin rootstock seedlings, based on accumulated TEP, were 0.707 and 0.834, respectively. The hypocotyl length and seedling quality index prediction models of pumpkin rootstock seedlings, based on accumulated TEP, were y1 = 0.001 x2 − 0.180 x + 13.057 and y2 = 0.008 x0.722, respectively, which could be used for predicting the growth of pumpkin rootstock seedlings grown under different temperature and light conditions.
The relatively low light intensity during autumn–winter or early spring and inclement weather such as rain or fog may lead to extended production periods and decreased quality of greenhouse-grown tomato seedlings. To produce high-quality tomato seedlings rapidly, the influences of supplementary lights with different spectra on the morphological and physiological traits of tomato seedlings were measured in a greenhouse. Supplemental lighting with the same daily light integrals (DLI) of 3.6 mol m−2d−1 was provided by white (W) light-emitting diodes (LEDs), white plus red (WR) LEDs, and red plus blue (RB) LEDs, respectively, and tomato seedlings grown under only sunlight irradiation were regarded as the control. Our results demonstrate that raised DLI by supplementary light improved the growth and development of greenhouse-grown tomato seedlings, regardless of the spectral composition. Under conditions with the equal DLI, the tomato seedlings grown under supplementary WR LEDs with a red to blue light ratio (R:B ratio) of 1.3 obtained the highest values of the shoot and root fresh weights, net photosynthetic rate, and total chlorophyll content. The best root growth and highest root activity of tomato seedlings were also found under the supplementary WR LEDs. Supplementary WR LEDs remarkably increased the stem firmness of the greenhouse-grown tomato seedlings, and increased the starch content in the leaves of greenhouse-grown tomato seedlings compared to the control. However, statistically significant differences did not occur in the sucrose, carotenoid contents, superoxide dismutase (SOD), and catalase (CAT) activities among the different supplemental lighting treatments. In conclusion, supplemental LED lighting could promote the growth and development of greenhouse-grown tomato seedlings grown under insufficient sunlight conditions. In addition, WR LEDs could obtain tomato seedlings with a higher net photosynthetic rate, higher root activity, and higher starch content compared with other treatments, which could be applied as supplementary lights in greenhouse-grown tomato seedlings grown in seasons with insufficient light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.