Background COVID-19 vaccines show excellent efficacy in clinical trials and effectiveness in real-world data, but some people still become infected with SARS-CoV-2 after vaccination. This study aimed to identify risk factors for post-vaccination SARS-CoV-2 infection and describe the characteristics of post-vaccination illness. Methods This prospective, community-based, nested, case-control study used self-reported data (eg, on demographics, geographical location, health risk factors, and COVID-19 test results, symptoms, and vaccinations) from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile phone app. For the risk factor analysis, cases had received a first or second dose of a COVID-19 vaccine between Dec 8, 2020, and July 4, 2021; had either a positive COVID-19 test at least 14 days after their first vaccination (but before their second; cases 1) or a positive test at least 7 days after their second vaccination (cases 2); and had no positive test before vaccination. Two control groups were selected (who also had not tested positive for SARS-CoV-2 before vaccination): users reporting a negative test at least 14 days after their first vaccination but before their second (controls 1) and users reporting a negative test at least 7 days after their second vaccination (controls 2). Controls 1 and controls 2 were matched (1:1) with cases 1 and cases 2, respectively, by the date of the post-vaccination test, health-care worker status, and sex. In the disease profile analysis, we sub-selected participants from cases 1 and cases 2 who had used the app for at least 14 consecutive days after testing positive for SARS-CoV-2 (cases 3 and cases 4, respectively). Controls 3 and controls 4 were unvaccinated participants reporting a positive SARS-CoV-2 test who had used the app for at least 14 consecutive days after the test, and were matched (1:1) with cases 3 and 4, respectively, by the date of the positive test, health-care worker status, sex, body-mass index (BMI), and age. We used univariate logistic regression models (adjusted for age, BMI, and sex) to analyse the associations between risk factors and post-vaccination infection, and the associations of individual symptoms, overall disease duration, and disease severity with vaccination status. Findings Between Dec 8, 2020, and July 4, 2021, 1 240 009 COVID Symptom Study app users reported a first vaccine dose, of whom 6030 (0·5%) subsequently tested positive for SARS-CoV-2 (cases 1), and 971 504 reported a second dose, of whom 2370 (0·2%) subsequently tested positive for SARS-CoV-2 (cases 2). In the risk factor analysis, frailty was associated with post-vaccination infection in older adults (≥60 years) after their first vaccine dose (odds ratio [OR] 1·93, 95% CI 1·50–2·48; p<0·0001), and individuals living in highly deprived areas had increased odds of post-vaccination infection following their first vaccine dose (OR 1·11, 95% CI 1·01–1·23; p=0·039). Individuals without obesity (...
Summary Background In children, SARS-CoV-2 infection is usually asymptomatic or causes a mild illness of short duration. Persistent illness has been reported; however, its prevalence and characteristics are unclear. We aimed to determine illness duration and characteristics in symptomatic UK school-aged children tested for SARS-CoV-2 using data from the COVID Symptom Study, one of the largest UK citizen participatory epidemiological studies to date. Methods In this prospective cohort study, data from UK school-aged children (age 5–17 years) were reported by an adult proxy. Participants were voluntary, and used a mobile application (app) launched jointly by Zoe Limited and King's College London. Illness duration and symptom prevalence, duration, and burden were analysed for children testing positive for SARS-CoV-2 for whom illness duration could be determined, and were assessed overall and for younger (age 5–11 years) and older (age 12–17 years) groups. Children with longer than 1 week between symptomatic reports on the app were excluded from analysis. Data from symptomatic children testing negative for SARS-CoV-2, matched 1:1 for age, gender, and week of testing, were also assessed. Findings 258 790 children aged 5–17 years were reported by an adult proxy between March 24, 2020, and Feb 22, 2021, of whom 75 529 had valid test results for SARS-CoV-2. 1734 children (588 younger and 1146 older children) had a positive SARS-CoV-2 test result and calculable illness duration within the study timeframe (illness onset between Sept 1, 2020, and Jan 24, 2021). The most common symptoms were headache (1079 [62·2%] of 1734 children), and fatigue (954 [55·0%] of 1734 children). Median illness duration was 6 days (IQR 3–11) versus 3 days (2–7) in children testing negative, and was positively associated with age (Spearman's rank-order r s 0·19, p<0·0001). Median illness duration was longer for older children (7 days, IQR 3–12) than younger children (5 days, 2–9). 77 (4·4%) of 1734 children had illness duration of at least 28 days, more commonly in older than younger children (59 [5·1%] of 1146 older children vs 18 [3·1%] of 588 younger children; p=0·046). The commonest symptoms experienced by these children during the first 4 weeks of illness were fatigue (65 [84·4%] of 77), headache (60 [77·9%] of 77), and anosmia (60 [77·9%] of 77); however, after day 28 the symptom burden was low (median 2 symptoms, IQR 1–4) compared with the first week of illness (median 6 symptoms, 4–8). Only 25 (1·8%) of 1379 children experienced symptoms for at least 56 days. Few children (15 children, 0·9%) in the negatively tested cohort had symptoms for at least 28 days; however, these children experienced greater symptom burden throughout their illness (9 symptoms, IQR 7·7–11·0 vs 8, 6–9) and after day 28 (5 symptoms, IQR 1·5–6·5 vs 2, 1–4) tha...
We aimed to review the data available to evaluate the long-term consequences of coronavirus disease 2019 (COVID-19) at 6 months and above. We searched relevant observational cohort studies up to 9 February 2022 in Pubmed, Embase, and Web of Science. Random-effects inverse-variance models were used to evaluate the Pooled Prevalence (PP) and its 95% confidence interval (CI) of long-term consequences. The Newcastle–Ottawa quality assessment scale was used to assess the quality of the included cohort studies. A total of 40 studies involving 10,945 cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection were included. Of the patients, 63.87% had at least one consequence at the 6 month follow-up, which decreased to 58.89% at 12 months. The most common symptoms were fatigue or muscle weakness (PP 6–12 m = 54.21%, PP ≥ 12 m = 34.22%) and mild dyspnea (Modified Medical Research Council Dyspnea Scale, mMRC = 0, PP 6–12 m = 74.60%, PP ≥ 12 m = 80.64%). Abnormal computerized tomography (CT; PP 6–12 m = 55.68%, PP ≥ 12 m = 43.76%) and lung diffuse function impairment, i.e., a carbon monoxide diffusing capacity (DLCO) of < 80% were common (PP 6–12 m = 49.10%, PP ≥ 12 m = 31.80%). Anxiety and depression (PP 6–12 m = 33.49%, PP ≥ 12 m = 35.40%) and pain or discomfort (PP 6–12 m = 33.26%, PP ≥ 12 m = 35.31%) were the most common problems that affected patients’ quality of life. Our findings suggest a significant long-term impact on health and quality of life due to COVID-19, and as waves of ASRS-CoV-2 infections emerge, the long-term effects of COVID-19 will not only increase the difficulty of care for COVID-19 survivors and the setting of public health policy but also might lead to another public health crisis following the current pandemic, which would also increase the global long-term burden of disease.
We aimed to assess the effectiveness and safety of coronavirus disease 2019 (COVID-19) vaccines for pregnant women in real-world studies. We searched for observational studies about the effectiveness and safety of COVID-19 vaccines among vaccinated pregnant women from inception to 6 November 2021. A total of 6 studies were included. We found that vaccination prevented pregnant women from SARS-CoV-2 infection (OR = 0.50, 95% CI, 0.35–0.79) and COVID-19-related hospitalization (OR = 0.50, 95% CI, 0.31–0.82). Messenger-RNA vaccines could reduce the risk of infection in pregnant women (OR = 0.13, 95% CI, 0.03–0.57). No adverse events of COVID-19 vaccination were found on pregnant, fetal, or neonatal outcomes. Our analysis confirmed the effectiveness and safety of COVID-19 vaccines for pregnant women. Policy makers should formulate targeted strategies to improve vaccine coverage in pregnant women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.