Endometriosis (EMs) occurs in approximately 50% of women with infertility. The main causes of EMs-related infertility are follicle dysplasia and reduced oocyte quality. Iron overload occurs in ovarian follicular fluid (FF) of patients with EMs, and this condition is associated with oocyte maturation disorder. However, the underlying molecular mechanism remains largely unknown. In the present study, we identified the mechanism underlying ferroptosis in ovarian granulosa cells and oocyte maturation failure in EMs based on a retrospective review of in vitro fertilization/intracytoplasmic sperm injection-frozen embryo transfer outcomes in infertile patients with EMs. Mouse granulosa cells were treated with EMs-related infertile patients' follicular fluid (EMFF) in vitro. Western blot analysis, quantitative polymerase chain reaction, fluorescence staining, and transmission electron microscopy were used to assess granulosa cells ferroptosis. The effects of exosomes were examined by nanoparticle tracking analysis, RNA-seq, and Western blot analysis. Finally, the therapeutic values of vitamin E and iron chelator (deferoxamine mesylate) in vivo were evaluated in an EMs-related infertility model. Patients with ovarian EMs experienced poorer oocyte fertility than patients with non-ovarian EMs. We observed that EMFF with iron overload-induced granulosa cell ferroptosis in vitro and in vivo. Mechanically, nuclear receptor coactivator four-dependent ferritinophagy was involved in this process. Notably, granulosa cells undergoing ferroptosis further suppressed oocyte maturation by releasing exosomes from granulosa cells. In therapeutic studies, vitamin E and iron chelators effectively alleviated EMs-related infertility models. Our study indicates a novel mechanism through which EMFF with iron overload induces ferroptosis of granulosa cells and oocyte dysmaturity in EMs-related infertility, providing a potential therapeutic strategy for EMs-related infertility.
Problem: Endometriosis (EMS) is a chronic inflammatory disease with unclear pathogenesis. Three studies have uncovered the influence of gut microbiota on mice with EMS, but no study has investigated the characteristics of fecal metabolomics to determine some important clues on EMS. This research aims to uncover the interaction between fecal metabolomics and gut microbiota in EMS mice. Method of study: Female C57BL/6J mice were used to construct the EMS model. Non-target metabolomics was applied to detect the fecal metabolites of EMS mice. The 16s rRNA sequencing was used for clarifying the composition of the gut microbiota. The functional characteristics of gut microbiota were analyzed using the PICRUSt. The receiver operator characteristic curve (ROC) analysis was utilized for determining the potential important differential metabolites, and the Spearman correlation coefficient was applied for expressing the correlation between the important differential metabolites and gut microbiota. Results: A total of 156 named differential metabolites were screened. The diversity and the abundance of gut microbiota in EMS mice decreased. Eleven pathways were involved in the differential metabolites and the functional prediction of gut microbiota, among which the second bile acid biosynthesis and alpha-linolenic acid (ALA) metabolism were the significant enrichment pathways. The increased abundance of chenodeoxycholic and ursodeoxycholic acids and the decreased abundance of ALA and 12,13-EOTrE were found in the feces of EMS mice. Conclusion: The abnormal fecal metabolites, which are influenced by dysbacteriosis, may be the characteristics of EMS mice and can be the potential important indices to distinguish the disease.
Taken together, the present studies demonstrate that pan-LXR activation increases hepatic fatty acid desaturation via the induction of SCD1 expression in an LXRα-dependent and SREBP1c-mediated manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.