Introduction Reasons for drug shortages are multi-factorial, and patients are greatly injured. So we needed to reduce the frequency and risk of drug shortages in hospitals. At present, the risk of drug shortages in medical institutions rarely used prediction models. To this end, we attempted to proactively predict the risk of drug shortages in hospital drug procurement to make further decisions or implement interventions. Objectives The aim of this study is to establish a nomogram to show the risk of drug shortages. Methods We collated data obtained using the centralized procurement platform of Hebei Province and defined independent and dependent variables to be included in the model. The data were divided into a training set and a validation set according to 7:3. Univariate and multivariate logistic regression were used to determine independent risk factors, and discrimination (using the receiver operating characteristic curve), calibration (Hosmer-Lemeshow test), and decision curve analysis were validated. Results As a result, volume-based procurement, therapeutic class, dosage form, distribution firm, take orders, order date, and unit price were regarded as independent risk factors for drug shortages. In the training (AUC = 0.707) and validation (AUC = 0.688) sets, the nomogram exhibited a sufficient level of discrimination. Conclusions The model can predict the risk of drug shortages in the hospital drug purchase process. The application of this model will help optimize the management of drug shortages in hospitals.
To evaluate the effect of imrecoxib on CYP2C11 enzyme activity, mRNA, and protein expression, a UPLC method was established. Tolbutamide was selected as the CYP2C11 enzyme‐specific probe drug and incubated with imrecoxib in rat liver microsomes. The yield of 4‐hydroxytolbutamide was measured using UPLC to investigate the effect of imrecoxib on CYP2C11 enzyme activity. Imrecoxib (10 mg/kg) was administered intragastrically twice daily. After 1, 7, and 14 days of administration, the liver tissues were analyzed. The expression of CYP2C11 enzyme mRNA was determined using reverse transcription‐polymerase chain reaction, and its protein expression was determined using Western blot analysis. Imrecoxib concentration was inversely proportional to the production of 4‐hydroxytolbutamide in liver microsomes. Imrecoxib demonstrated a dose‐dependent inhibitory effect on CYP2C11 activity with IC50 = 74.77 μM. After administration, reverse transcription‐polymerase chain reaction showed CYP2C11 enzyme mRNA expressions were 65% (P < 0.05), 35%, and 34% of the control group, respectively (P < 0.01). Western blot analysis showed CYP2C11 enzyme protein expressions were 80, 37, and 34% of the control group, respectively (P < 0.01). Imrecoxib can reduce mRNA and protein expression of CYP2C11 enzyme in rat liver and inhibit the activity of CYP2C11 enzyme in a dose‐dependent manner. However, it does not produce clinically significant drug interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.