A VHH antibody (or nanobody) is the antigen binding fragment of heavy chain only antibodies. Discovered nearly 25 years ago, they have been investigated for their use in clinical therapeutics and immunodiagnostics, and more recently for environmental monitoring applications. A new and valuable immunoreagent for the analysis of small molecular weight environmental chemicals, VHH will overcome many pitfalls encountered with conventional reagents. In the work so far, VHH antibodies often perform comparably to conventional antibodies for small molecule analysis, are amenable to numerous genetic engineering techniques, and show ease of adaption to other immunodiagnostic platforms for use in environmental monitoring. Recent reviews cover the structure and production of VHH antibodies as well as their use in clinical settings. However, no report focuses on the use of these VHH antibodies to small environmental chemicals (MW <1,500 Da). This review article summarizes the efforts made to produce VHHs to various environmental targets, compares the VHH-based assays with conventional antibody assays, and discusses the advantages and limitations in developing these new antibody reagents particularly to small molecule targets.
Nanobodies (nAbs) are small, minimal antibodies that have distinct attributes that make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications. Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced tissue penetration and improved spatial imaging resolution. Here, we report the generation and validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in mammalian brain neurons. We describe a novel hierarchical validation pipeline to systematically evaluate nAbs isolated by phage display for effective and specific use as intrabodies and immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in mammalian brain neurons, allowing for visualization and/or modulation of structure and function at those sites.
Background: The clinical spectrum of neurosyphilis (NS) has changed over time. Objective: To describe the clinical spectrum and characteristics of NS in HIV-negative patients. Methods: A retrospective chart review was performed for 149 in patients with NS. Result: All patients were >25 years old, including 16.8% asymptomatic for NS, 15.4% with syphilitic meningitis, 24.2% with meningovascular NS, 38.9% with general paresis, 4.0% with tabes dorsalis and 0.7% with gummatous NS. The original misdiagnosis rate was 84.6%. All 149 patients had positive serum Treponema pallidum particle agglutination (TPPA) and rapid plasma reagin (RPR). The overall positive rates of cerebrospinal fluid RPR (CSF-RPR) and CSF-TPPA were 57.0 and 89.9%, respectively. CSF pleocytosis and elevated CSF protein were found in 40.3% of patients. Nonspecific abnormal brain magnetic resonance imaging and electroencephalography findings were present in 60.4 and 54.8% of NS patients, respectively. Conclusions: NS has various clinical manifestations, laboratory findings and magnetic resonance imaging and electroencephalography findings, but all studies lack specificity. Every patient with neurological or psychiatric symptoms that are without unambiguous causes should have blood tests for syphilis. When serology proves positive, patients should undergo CSF examination.
IntroductionNutrient profiling is defined as the science of categorising foods based on their nutrient composition. The Choices Programme is a nutrient profile system with criteria that determine whether foods are eligible to carry a “healthier option” stamp. The Daily Menu Method which has been developed to evaluate these criteria is described here. This method simulates the change in calculated nutrient intakes which would be the result of consumers changing their diets in favour of food products that comply with the criteria.MethodsAverage intakes of energy, trans fatty acids (TFA), saturated fatty acids (SAFA), sodium, added sugar and fibre were derived from dietary intake studies and food consumption surveys of 7 countries: The Netherlands, Greece, Spain, the USA, Israel, China and South Africa. For each of the key nutrients, these average intakes were translated into three Typical Daily Menus per country. Average intakes based on these three menus were compared with average intakes from three Choices Daily Menus. To compose the Choices Menus, foods from the Typical Menus that did not comply with the Choices criteria were replaced with foods that did comply and are available on the market.ResultsComparison of intakes from the Choices Menus with the survey data showed that calculated intakes of energy, SAFA, TFA, sodium and added sugar were reduced. Fibre intakes were increased. The size of the effect differed per country.ConclusionThe Daily Menu Method is a useful means to predict the potential effects of nutrient profiles such as the Choices criteria, on daily nutrient intakes. The method can be applied internationally and confirms that the criteria of the Choices Programme are in line with the aim of the programme: to improve nutrient intakes in the direction of the recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.