Cooperation between the fog and the cloud in mobile cloud computing environments could offer improved offloading services to smart mobile user equipment (UE) with computation intensive tasks. In this paper, we tackle the computation offloading problem in a mixed fog/cloud system by jointly optimizing the offloading decisions and the allocation of computation resource, transmit power and radio bandwidth, while guaranteeing user fairness and maximum tolerable delay. This optimization problem is formulated to minimize the maximal weighted cost of delay and energy consumption (EC) among all UEs, which is a mixed-integer non-linear programming problem. Due to the NP-hardness of the problem, we propose a low-complexity suboptimal algorithm to solve it, where the offloading decisions are obtained via semidefinite relaxation and randomization and the resource allocation is obtained using fractional programming theory and Lagrangian dual decomposition. Simulation results are presented to verify the convergence performance of our proposed algorithms and their achieved fairness among UEs, and the performance gains in terms of delay, EC and the number of beneficial UEs over existing algorithms. Index Terms-Computation offloading, cloud computing, fog computing, resource allocation, min-max fairness.
This is a repository copy of Cooperative computation offloading and resource allocation for blockchain-enabled mobile edge computing: A deep reinforcement learning approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.