The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.
The coalesce-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its wide potential applications. However, microscopic mechanism of spontaneous motion has not been discussed thoroughly. In this study, we fabricated two types of superhydrophobic copper surfaces with sisal-like nanoribbon structures and defoliation-like nanosheet structures by different wet chemical oxidation process and followed by same fluorization treatment. With lotus leaf and butterfly wing as control samples, the spontaneous motion phenomenon of condensate drops on these four kinds of SHSs was investigated by using optical microscope under ambient conditions. The results showed that among all four types of SHSs, only superhydrophobic copper surfaces with sisal-like nanoribbon structures showed obvious spontaneous motion of condensate drops, especially when the relative humidity was higher. The microscopic mechanism of spontaneous motion was discussed in relation to the states of condensate drops on different nanostructures. It shows that the instantaneous Cassie state of condensed droplets prior to coalescence plays a key role in determining whether the coalesced drop departs, whereas only SHS possessing nanostructures with small enough Wenzel roughness parameter r (at least <2.1) and nanogaps forming high enough Laplace pressure favors the formation of the instantaneous Cassie state by completing the Wenzel-Cassie transition.
Delayed frost growth on superhydrophobic surfaces (SHSs) with jumping condensates has been found by many researchers recently. However, the mechanism of this phenomenon has not been elucidated clearly. In this study, copper SHSs with or without jumping condensates were selected as the substrates for observing condensation icing at a relative humidity (RH) of 60%. The results showed that only SHS with jumping condensates showed delayed condensation icing. Moreover, when such SHSs were placed upward and the surface temperature was held at -10 °C, some discrete frozen drops first appeared on the SHSs. The following icing mainly occurred on these discrete global crystals and then expanded around them until covering the entire surface. Little macroscopic interdrop freezing phenomenon was found. The growth of the frost front is mainly dominated by jumping freezing (the condensed droplets jumped onto the ice crystals and were frozen) or direct vapor-ice deposition. Using microscopy, we found interdrop freezing occurred, in addition to the two mechanisms mentioned above. By placing the SHS downward at -10 °C and intentionally introducing or eliminating tiny dusts, we confirmed that there were no superhydrophobic defects on our SHSs. The discrete frozen drops first appearing on the SHSs were triggered by tiny dusts falling on the surface before or during condensation icing. The key approach in delaying or resisting frost growth on SHSs with jumping condensates is to retard initial ice crystal formation, e.g., eliminating the edge effect and keeping the SHSs clean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.