In this paper, a gait classification method based on the deep belief network (DBN) optimized by the sparrow search algorithm (SSA) is proposed. The multiple features obtained based on surface electromyography (sEMG) are fused. These functions are used to train the model. First, the sample features, such as the time domain and frequency domain features of the denoised sEMG are extracted and then the fused features are obtained by feature combination. Second, the SSA is utilized to optimize the architecture of DBN and its weight parameters. Finally, the optimized DBN classifier is trained and used for gait recognition. The classification results are obtained by varying different factors and the recognition rate is compared with the previous classification algorithms. The results show that the recognition rate of SSA-DBN is higher than other classifiers, and the recognition accuracy is improved by about 2% compared with the unoptimized DBN. This indicates that for the application in gait recognition, SSA can optimize the network performance of DBN, thus improving the classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.