Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.
Microorganisms drive several processes needed for robust plant growth and health. Harnessing microbial functions is thus key to productive and sustainable food production. Molecular methods have led to a greater understanding of the soil microbiome composition. However, translating species or gene composition into microbiome functionality remains a challenge. Community ecology concepts such as the biodiversity–ecosystem functioning framework may help predict the assembly and function of plant-associated soil microbiomes. Higher diversity can increase the number and resilience of plant-beneficial functions that can be coexpressed and unlock the expression of plant-beneficial traits that are hard to obtain from any species in isolation. We combine well-established community ecology concepts with molecular microbiology into a workable framework that may enable us to predict and enhance soil microbiome functionality to promote robust plant growth in a global change context.
Plant pathogen invasions are often associated with changes in physical environmental conditions and the composition of host-associated rhizosphere microbiome. It is however unclear how these factors interact and correlate with each other in determining plant disease dynamics in natural field conditions. To study this, we temporally sampled the rhizosphere of tomato plants that were exposed to moderate to aggressive Ralstonia solanacearum pathogen invasions over one crop season. We found that physiochemical soil properties correlated weakly with the severity of pathogen invasion apart from the water-soluble nitrogen concentration, which increased more clearly during the aggressive invasion. Instead, a much stronger link was found between pathogen invasion and reduced abundance and diversity of various rhizosphere bacterial taxa, simplification of bacterial interaction networks and loss of several predicted functional genes. We further verified our results in a separate greenhouse experiment to show that pathogen invasion causally drives similar changes in rhizosphere microbiome diversity and composition under controlled environmental conditions. Our results suggest that R. solanacearum invasion disrupts rhizosphere bacterial communities leading to clear reduction in the diversity and abundance of non-pathogenic bacteria. These changes could potentially affect the likelihood of secondary pathogen invasions during following crop seasons as less diverse microbial communities are also often less resistant to invasions. Strong negative correlation between pathogen and non-pathogenic bacterial densities further suggest that relative pathogen abundance could better predict the severity of bacterial wilt disease outbreaks compared to absolute pathogen abundance. Monitoring the dynamics of whole microbiomes could thus open new avenues for more accurate disease diagnostics in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.