Green tea polyphenols, major constituents of green tea, are potent chemopreventive agents in a number of experimental models of cancer in animals. The mechanisms of cancer protection by these agents are not clear, but may involve modulation of the enzyme systems responsible for the detoxification of chemical carcinogens. The present studies show that a green tea polyphenol extract (GTP) induces chloramphenicol acetyltransferase (CAT) activity in human heptoma HepG2 cells transfected with a plasmid construct which contains an antioxidant-responsive element (ARE) and a minimal glutathione S-transferase Ya promoter linked to the CAT reporter gene. This indicates that GTP stimulates the transcription of Phase II detoxifying enzymes through the ARE. To explore the upstream signaling pathways leading to gene expression, we studied the involvement of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 2 (ERK2) and c-Jun N-terminal kinase 1 (JNK1). Potent activation of ERK2 was seen following treatment of HepG2 cells with different concentrations of GTP. Similar to ERK2, JNK1 was also strongly activated by treatment with GTP, although to a lesser extent and in a different dose-dependent fashion. Kinetic studies revealed that GTP activation of JNK1 was delayed and sustained, whereas ERK2 activation was rapid and transient. Furthermore, GTP treatment also increased mRNA levels of the immediate-early genes c-jun and c-fos, as determined by reverse transcriptase-coupled polymerase chain reaction. Taken together, these studies provide insights into the action of GTP and suggest that the stimulation MAPKs may be the potential signaling pathways utilized by GTP to activate ARE-dependent genes.
These studies show that TAM activates the signal transduction kinases, JNK1 and ERK2, which may play important roles in the regulation of gene expression by TAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.