Alzheimer's disease is characterized by a widespread functional disturbance of the human brain. Fibrillar amyloid proteins are deposited inside neurons as neurofibrillary tangles and extracellularly as amyloid plaque cores and in blood vessels. The major protein subunit (A4) of the amyloid fibril of tangles, plaques and blood vessel deposits is an insoluble, highly aggregating small polypeptide of relative molecular mass 4,500. The same polypeptide is also deposited in the brains of aged individuals with trisomy 21 (Down's syndrome). We have argued previously that the A4 protein is of neuronal origin and is the cleavage product of a larger precursor protein. To identify this precursor, we have now isolated and sequenced an apparently full-length complementary DNA clone coding for the A4 polypeptide. The predicted precursor consists of 695 residues and contains features characteristic of glycosylated cell-surface receptors. This sequence, together with the localization of its gene on chromosome 21, suggests that the cerebral amyloid deposited in Alzheimer's disease and aged Down's syndrome is caused by aberrant catabolism of a cell-surface receptor.
The precursor of the Alzheimer's disease‐specific amyloid A4 protein is an integral, glycosylated membrane protein which spans the bilayer once. The carboxy‐terminal domain of 47 residues was located at the cytoplasmic site of the membrane. The three domains following the transient signal sequence of 17 residues face the opposite side of the membrane. The C‐terminal 100 residues of the precursor comprising the amyloid A4 part and the cytoplasmic domain have a high tendency to aggregate, and proteinase K treatment results in peptides of the size of amyloid A4. This finding suggests that there is a precursor‐product relationship between precursor and amyloid A4 and we conclude that besides proteolytic cleavage other events such as post‐translational modification and membrane injury are primary events that precede the release of the small aggregating amyloid A4 subunit.
Background/Aims: Micro-RNA (miR)-146b-5p is overexpressed in papillary thyroid carcinoma (PTC) and associated with extrathyroidal invasion and advanced tumor stage. In the present study, we showed that miR-146b-5p is upregulated in PTC with lymph node metastasis. Methods: A computational search and luciferase assay identified zinc RING finger 3 (ZNRF3), a negative regulator of Wnt/β-catenin signaling, as a direct target of miR-146b-5p in PTC. Results: MiR-146b-5p promoted migration and invasiveness and induced epithelial-mesenchymal transition (EMT) of PTC cells, whereas ZNRF3 overexpression reversed this effect. MiR-146b-5p increased the cell surface levels of the Wnt receptors Frizzled-6 and LRP6 and enhanced Wnt/β-catenin signaling by downregulating ZNRF3, whereas an inhibitor of Wnt/β-catenin suppressed the effect of miR-146b-5p on migration, invasiveness and EMT of PTC cells. Conclusion: These results indicate that miR-146b-5p induces EMT and may promote PTC metastasis through the regulation of Wnt/β-catenin signaling, and suggest novel potential therapeutic targets for the treatment of PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.