The blood-brain barrier (BBB), a dynamic and complex barrier formed by endothelial cells, can impede the entry of unwanted substances – pathogens and therapeutic molecules alike – into the central nervous system (CNS) from the blood circulation. Taking into account the fact that CNS-related diseases are the largest and fastest growing unmet medical concern, many potential protein- and nucleic acid-based medicines have been developed for therapeutic purposes. However, due to their poor ability to cross the BBB and the plasma membrane, the above-mentioned bio-macromolecules have limited use in treating neurological diseases. Finding effective, safe, and convenient ways to deliver therapeutic molecules into the CNS is thus urgently required. In recent decades, much effort has been expended in the development of drug delivery technologies, of which cell-penetrating peptides (CPPs) have the most promising potential. The present review covers the latest advances in CPP delivery technology, and provides an update on their use in CNS-targeted drug delivery.
Cell-penetrating peptide (CPP) based delivery have provided immense potential for the therapeutic applications, however, most of nonhuman originated CPPs carry the risk of possible cytotoxicity and immunogenicity, thus may restricting to be used. Here, we describe a novel human-derived CPP, denoted hPP10, and hPP10 has cell-penetrating properties evaluated by CellPPD web server, as well as In-Vitro and In-Vivo analysis. In vitro studies showed that hPP10-FITC was able to penetrate into various cells including primary cultured cells, likely through an endocytosis pathway. And functionalized macromolecules, such as green fluorescent protein (GFP), tumor-specific apoptosis inducer Apoptin as well as biological active enzyme GCLC (Glutamate-cysteine ligase, catalytic subunit) can be delivered by hPP10 in vitro and in vivo. Collectively, our results suggest that hPP10 provide a novel and versatile tool to deliver exogenous proteins or drugs for clinical applications as well as reprogrammed cell-based therapy.
Cell-penetrating peptides (CPPs) have been successfully applied to deliver various functional macromolecules into cells in recent times. Here, we describe a novel CPP designated as hPP3 (KPKRKRRKKKGHGWSR), which were derived from human nuclear body protein SP140-like protein. The location of hPP3-FITC in cells was investigated using the fluorescence microscopy, and the internalization of hPP3 was quantitatively measured using a fluorescence spectrophotometer. The results showed that hPP3-FITC could enter into culturing cells, following a concentration-, incubation time-, serum-, and temperature-dependent manner. Uptake of hPP3-FITC into cells was significantly enhanced by DMSO pretreatment, and inhibited by heparin and the endocytosis inhibitors (chlorpromazine and sodium azide), while the potent lysosomotropic agent, chloroquine, showed small positive effects on hPP3-FITC penetrating. Moreover, hPP3 could mediate functional GFP, KLA, or NBD penetration. The findings of this study showed that human origin peptide hPP3 has the potential to act as a macromolecular carrier penetrating cellular membranes and promising delivery peptide as drug delivery vectors.
Cell-penetrating peptides (CPPs) are short, often hydrophilic peptides that can deliver many kinds of molecules into cells and that are likely to serve as a useful tool of future biotherapeutics. However, CPPs application is limited because of insufficient transduction efficiency and unpredictable cellular localization. Here, we investigated the enhancement of 1,2-benzisothiazolin-3-one (BIT) on the uptake of a synthetic fluorescent TAT and a TAT-conjugated green fluorescent protein (GFP) or pro-apoptotic peptide KLA and evaluated its toxicity in various cell lines. Our results showed that BIT pretreatment can enhance the penetration efficiency of TAT and its fusion peptide. In addition, the fluorescence of the peptide conjugate at effective doses was well-distributed in the intracellular of different cell lines without membrane perforation or detectable cytotoxicity. The internalization of the peptides was serum-dependent and temperature-independent. These findings imply that BIT may serve as a newly found delivery enhancer that is suitable for improving the penetration of CPPs.
Although gene therapy offers hope against incurable diseases, nonreplicating transduction vectors remain lacking. We have previously characterized a cell‐penetrating peptide hPP10 for the delivery of various cargoes; however, whether hPP10 can mediate nucleic acid delivery is still unknown. Here, examining via different ways, we demonstrate that hPP10 stably complexes with plasmid DNA (pDNA) and safely mediates nucleic acid transfection. hPP10 can mediate GFP‐, dsRed‐, and luciferase‐expressing plasmids into cells with nearly the same efficiency as commercial transfection reagents Turbofectin or Lipofect. Furthermore, hPP10 can mediate Cre fusion protein delivery and pDNA transfection simultaneously in the Cre/loxp system in vitro. In addition, hPP10 fused with an RNA‐binding domain can mediate delivery of small interfering RNA into cells to silence the reporter gene expression. Collectively, our results suggest that hPP10 is an option for nucleic acid delivery with efficiencies similar to that of commercial reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.