Mimicking natural photosynthesis to convert CO2 with H2O into value-added fuels achieving overall reaction is a promising way to reduce the atmospheric CO2 level. Casting the catalyst of two or more catalytic sites with rapid electron transfer and interaction may be an effective strategy for coupling photocatalytic CO2 reduction and H2O oxidation. Herein, based on the MOF ∪ COF collaboration, we have carefully designed and synthesized a crystalline hetero-metallic cluster catalyst denoted MCOF-Ti6Cu3 with spatial separation and functional cooperation between oxidative and reductive clusters. It utilizes dynamic covalent bonds between clusters to promote photo-induced charge separation and transfer efficiency, to drive both the photocatalytic oxidative and reductive reactions. MCOF-Ti6Cu3 exhibits fine activity in the conversion of CO2 with water into HCOOH (169.8 μmol g−1h−1). Remarkably, experiments and theoretical calculations reveal that photo-excited electrons are transferred from Ti to Cu, indicating that the Cu cluster is the catalytic reduction center.
China's internal rural-urban migrants experience social exclusion that may have significant mental health implications. This has historically been exacerbated by the hukou system. Echoing recent calls for interdisciplinary research on the interdependencies of urbanization and mental health, this review examines evidence of rural-urban migrants' mental health status in comparison with nonmigrants and its association with various dimensions of social exclusion. We found conflicting evidence on the mental health status of migrants in comparison with nonmigrants, but strong evidence that social exclusion is negatively associated with migrants' mental health: limited access to full labour rights and experience of social stigma, discrimination and inequity were the most significant factors. We discuss the limitations of current social epidemiological research and call for an attempt to use close-up, street-level ethnographic data on the daily experience of being a migrant in the mega-city, and describe our aim to produce a new sociological deep surveying instrument to understand migration, urban living, and mental health.
As payment for ecosystem services (PES) programs proliferate globally, assessing their impact upon households’ income and livelihood patterns is critical. The Sloping Land Conversion Program (SLCP) is an exceptional PES program, in terms of its ambitious biophysical and socioeconomic objectives, large geographic scale, numbers of people directly affected, and duration of operation. The SLCP has now operated in the poor mountainous areas in China for 10 y and offers a unique opportunity for policy evaluation. Using survey data on rural households’ livelihoods in the southern mountain area in Zhouzhi County, Shaanxi Province, we carry out a statistical analysis of the effects of PES and other factors on rural household income. We analyze the extent of income inequality and compare the socio-demographic features and household income of households participating in the SLCP with those that did not. Our statistical analysis shows that participation in SLCP has significant positive impacts upon household income, especially for low- and medium-income households; however, participation also has some negative impacts on the low- and medium-income households. Overall, income inequality is less among households participating in the SLCP than among those that do not after 7 y of the PES program. Different income sources have different effects on Gini statistics; in particular, wage income has opposite effects on income inequality for the participating and nonparticipating households. We find, however, that the SLCP has not increased the transfer of labor toward nonfarming activities in the survey site, as the government expected.
Neurogenesis and angiogenesis are two important processes that may contribute to the repair of brain injury after stroke. This study was designed to investigate whether transplantation of human embryonic neural stem cells (NSCs) into cortical peri-infarction 24h after ischemia effects cell proliferation in the subventricular zone (SVZ) and angiogenesis in the peri-infarct zone. NSCs were prepared from embryonic human brains at 8 weeks gestation. Focal cerebral ischemia was induced by permanent occlusion of the middle cerebral artery of adult rats. Animals were randomly divided into two groups (n=30, each) at 24h after ischemia: NSC-grafted and medium-grafted groups. Toluidine blue staining and 5'-bromo-2'-deoxyuridine (BrdU) or von Willebrand factor (vWF) immunohistochemistry were performed at 7, 14 and 28 days after transplantation. NSC transplantation increased the number of BrdU-positive cells in the ischemic ipsilateral SVZ compared with the medium control at 7 days (P<0.01). This difference in SVZ cell proliferation persisted at 14 days (P<0.01), but was not significant at 28 days (P>0.05). In addition, angiogenesis, as indicated by BrdU and vWF staining in cortical peri-infarct regions, was augmented by 46% and 65% in NSC-grafted rats versus medium-grafted rats at 7 and 14 days, respectively (P<0.05). However, this increase became non-significant at 28 days (P>0.05). Our results indicate that NSC transplantation enhances endogenous cell proliferation in the SVZ and promotes angiogenesis in the peri-infarct zone, even if it is performed in the acute phase of ischemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.