The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots.
SUMMARYSulfur-containing compounds play a critical role in the response of plants to abiotic stress factors including drought. The phytohormone abscisic acid (ABA) is the key regulator of responses to drought and high-salt stress. However, our knowledge about interaction of S-metabolism and ABA biosynthesis is scarce. Here we report that sulfate supply affects synthesis and steady-state levels of ABA in Arabidopsis wild-type seedlings. By using different mutants of the sulfate uptake and reduction pathway, we confirmed the impact of sulfate supply on steady-state ABA content in Arabidopsis and demonstrated that this impact was due to cysteine availability. Loss of the chloroplast sulfate transporter3;1 function (sultr3;1) resulted in significantly decreased aldehyde oxidase (AO) activity and ABA levels in seedlings and seeds. These mutant phenotypes could be reverted by exogenous application of cysteine or ectopic expression of SULTR3;1. In addition the sultr3;1 mutant showed a decrease of xanthine dehydrogenase activity, but not of nitrate reductase, strongly indicating that in seedlings cysteine availability limits activity of the molybdenum co-factor sulfurase, ABA3, which requires cysteine as the S-donor for sulfuration. Transcription of ABA3 and NCED3, encoding another key enzyme of the ABA biosynthesis pathway, was regulated by S-supply in wild-type seedlings. In contrast, ABA up-regulated the transcript level of SULTR3;1 and other S-metabolism-related genes. Our results provide evidence for a significant co-regulation of S-metabolism and ABA biosynthesis that operates to ensure sufficient cysteine for AO maturation and highlights the importance of sulfur for stress tolerance of plants.
SUMMARYMADS-box transcription factor AGL21 is responsive to several phytohormones as well as environmental cues and positively regulates auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. Therefore, AGL21 may be involved in various environmental and physiological signals-mediated lateral root development.
The gaseous hormone ethylene participates in many physiological processes in plants. Ethylene-inhibited root elongation involves PIN-FORMED2 (PIN2)-mediated basipetal auxin transport, but the molecular mechanisms underlying the regulation of PIN2 function by ethylene (and therefore auxin distribution) are poorly understood. Here, we report that the plant-specific and ethylene-responsive HD-Zip gene HB52 is involved in ethylene-mediated inhibition of primary root elongation in Arabidopsis thaliana. Biochemical and genetic analyses demonstrated that HB52 is ethylene responsive and acts downstream of ETHYLENE-INSENSITIVE3 (EIN3). HB52 knockdown mutants displayed an ethylene-insensitive phenotype during primary root elongation, while its overexpression resulted in short roots, as observed in ethylene-treated plants. In addition, root auxin distribution and gravitropism were impaired in HB52 knockdown and overexpression lines. Consistent with these findings, in vitro and in vivo binding experiments showed that HB52 regulates the expression of auxin transport-related genes, including PIN2, WAVY ROOT GROWTH1 (WAG1), and WAG2 by physically binding to their promoter regions. These findings suggest that HB52 functions in the ethylene-mediated inhibition of root elongation by modulating the expression of auxin transport components downstream of EIN3, revealing a mechanism in which HB52 acts as an important node in the crosstalk between ethylene and auxin signaling during plant growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.