Content Delivery Network (CDN) and Hypertext Transfer Protocol Secure (HTTPS) are two popular but independent web technologies, each of which has been well studied individually and independently. This paper provides a systematic study on how these two work together. We examined 20 popular CDN providers and 10,721 of their customer web sites using HTTPS. Our study reveals various problems with the current HTTPS practice adopted by CDN providers, such as widespread use of invalid certificates, private key sharing, neglected revocation of stale certificates, and insecure back-end communication. While some of those problems are operational issues only, others are rooted in the fundamental semantic conflict between the end-to-end nature of HTTPS and the man-in-the-middle nature of CDN involving multiple parties in a delegated service. To address the delegation problem when HTTPS meets CDN, we proposed and implemented a lightweight solution based on DANE (DNSbased Authentication of Named Entities), an emerging IETF protocol complementing the current Web PKI model. Our implementation demonstrates that it is feasible for HTTPS to work with CDN securely and efficiently. This paper intends to provide a context for future discussion within security and CDN community on more preferable solutions.
The isotopic composition of water vapour provides integrated perspectives on the hydrological histories of air masses and has been widely used for tracing physical processes in hydrological and climatic studies. Over the last two decades, the infrared laser spectroscopy technique has been used to measure the isotopic composition of water vapour near the Earth’s surface. Here, we have assembled a global database of high temporal resolution stable water vapour isotope ratios (δ18O and δD) observed using this measurement technique. As of March 2018, the database includes data collected at 35 sites in 15 Köppen climate zones from the years 2004 to 2017. The key variables in each dataset are hourly values of δ18O and δD in atmospheric water vapour. To support interpretation of the isotopologue data, synchronized time series of standard meteorological variables from in situ observations and ERA5 reanalyses are also provided. This database is intended to serve as a centralized platform allowing researchers to share their vapour isotope datasets, thus facilitating investigations that transcend disciplinary and geographic boundaries.
In extreme environments, such as at ultrahigh or ultralow temperatures, the amount of tape used should be minimal so as to reduce system contamination and unwanted residues. However, tapes made from conventional materials typically lose their adhesiveness or leave residues difficult to remove under such conditions. Thus, the development of more versatile, lightweight, and easily removable tapes for applications in such extreme environments has received considerable attention. Here, we report that horizontally superaligned carbon nanotube (SACNT) tapes can be used to provide perfect van der Waals (vdW) interface contacts over a wide range of temperatures (from −196 to 1000 °C), yielding outstanding adhesiveness with specific adhesion strengths up to ∼1.1 N/μg. With a surface density of only 0.5–5 μg/cm2, hundreds of times lighter than the vertically aligned CNT adhesives, the SACNT tapes can be cost-effectively provided in hundreds of meters. They have multipurpose adhesive abilities for versatile materials and are also easily separated from samples even after exposure to extreme temperature regimes. First-principles calculations confirm the mechanism of vdW adhesion and reveal that ultraflat and nanometer-thick SACNT tapes may yield far greater adhesive abilities. These SACNT tapes show great potential for use in mechanical bonding, electrical bonding, and thermal dissipation in electronic devices.
Anatomical adaptations to high-salinity environments in mangrove leaves may be recorded in leaf water isotopes. Recent studies observed lower O enrichment (Δ ) of leaf water with respect to source water in three mangrove species relative to adjacent freshwater trees, but the factors that govern this phenomenon remain unclear. To resolve this issue, we investigated leaf traits and Δ in 15 species of true mangrove plants, 14 species of adjacent freshwater trees, and 4 species of semi-mangrove plants at five study sites along south-eastern coast of China. Our results confirm that Δ was generally 3-4‰ lower for mangrove species than for adjacent freshwater or semi-mangrove species. We hypothesized that higher leaf water content (LWC) and lower leaf stomatal density (LS) both played important roles in reducing Δ in mangroves relative to nearby freshwater plants. Both differences acted to elongate effective leaf mixing length (L) in mangroves by about 200% and lower stomatal conductance by about 30%. Péclet models based on both LWC and LS could accurately predict Δ . Our findings highlight the potential species-specific anatomical determinants of Δ (or L), which has important implications for the interpretation of environmental information from metabolites produced by leaf water isotopes in palaeoclimate research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.