Ordinal Optimization has emerged as an efficient technique for simulation and optimization. Exponential convergence rates can be achieved in many cases. In this paper, we present a new approach that can further enhance the efficiency of ordinal optimization. Our approach determines a highly efficient number of simulation replications or samples and significantly reduces the total simulation cost. We also compare several different allocation procedures, including a popular two-stage procedure in simulation literature. Numerical testing shows that our approach is much more efficient than all compared methods. The results further indicate that our approach can obtain a speedup factor of higher than 20 above and beyond the speedup achieved by the use of ordinal optimization for a 210-design example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.