Yield stress materials flow if a sufficiently large shear stress is applied. Although such materials are ubiquitous and relevant for industry, there is no accepted microscopic description of how they yield, even in the simplest situations in which temperature is negligible and in which flow inhomogeneities such as shear bands or fractures are absent. Here we propose a scaling description of the yielding transition in amorphous solids made of soft particles at zero temperature. Our description makes a connection between the Herschel-Bulkley exponent characterizing the singularity of the flow curve near the yield stress Σ c , the extension and duration of the avalanches of plasticity observed at threshold, and the density P(x) of soft spots, or shear transformation zones, as a function of the stress increment x beyond which they yield. We argue that the critical exponents of the yielding transition may be expressed in terms of three independent exponents, θ, d f , and z, characterizing, respectively, the density of soft spots, the fractal dimension of the avalanches, and their duration. Our description shares some similarity with the depinning transition that occurs when an elastic manifold is driven through a random potential, but also presents some striking differences. We test our arguments in an elastoplastic model, an automaton model similar to those used in depinning, but with a different interaction kernel, and find satisfying agreement with our predictions in both two and three dimensions. M any solids will flow and behave as fluids if a sufficiently large shear stress is applied. In crystals, plasticity is governed by the motion of dislocations (1, 2). In amorphous solids, there is no order, and conserved defects cannot be defined. However, as noticed by Argon (3), plasticity consists of elementary events localized in space, called shear transformations, in which a few particles rearrange. This observation supports that there are special locations in the sample, called shear transformation zones (STZs) (4), in which the system lies close to an elastic instability. Several theoretical approaches of plasticity, such as STZ theory (4) or soft glassy rheology (5), assume that such zones relax independently or are coupled to each other via an effective temperature. However, at zero temperature and small applied strain rate _ γ, computer experiments (6-11) and very recent experiments (12, 13) indicate that local rearrangements are not independent: plasticity occurs via avalanches in which many shear transformations are involved, forming elongated structures in which plasticity localizes. If conditions are such that flow is homogeneous (as may occur, for example, in foams or emulsions), one finds that the flow curves are singular at small strain rate and follow a Herschel-Bulkley law Σ − Σ c ∼ _ γ 1=β (14, 15). These features are reproduced qualitatively by elasto-plastic models (16)(17)(18)(19)(20) in which space is discretized. In these models, a site that yields plastically affects the stress in its surroundi...
Failure and flow of amorphous materials are central to various phenomena including earthquakes and landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level where the validity of popular models is debated. Here, we solve a mean-field model that captures the broad distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation PðxÞ ∼ x θ , where x is the stress increment beyond which they yield. We find that after an isotropic thermal quench, θ ¼ 1=2. However, θ depends continuously on the applied shear stress; this dependence is not monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained observations and captures reasonably well the value of exponents in three dimensions. Values of exponents in four dimensions are accurately predicted. These results support the fact that it is the true mean-field model that applies in large dimensions, and they raise fundamental questions about the nature of the yielding transition.
We study the stability of amorphous solids, focussing on the distribution P (x) of the local stress increase x that would lead to an instability. We argue that this distribution behaves as P (x) ∼ x θ , where the exponent θ is larger than zero if the elastic interaction between rearranging regions is non-monotonic, and increases with the interaction range. For a class of finite-dimensional models we show that stability implies a lower bound on θ, which is found to lie near saturation. For quadrupolar interactions these models yield θ ≈ 0.6 for d = 2 and θ ≈ 0.4 in d = 3 where d is the spatial dimension, accurately capturing previously unresolved observations in atomistic models, both in quasi-static flow and after a fast quench. In addition, we compute the Herschel-Buckley exponent in these models and show that it depends on a subtle choice of dynamical rules, whereas the exponent θ does not.
Many experiments show that the numbers of mRNA and protein are proportional to the cell volume in growing cells. However, models of stochastic gene expression often assume constant transcription rate per gene and constant translation rate per mRNA, which are incompatible with these experiments. Here, we construct a minimal gene expression model to fill this gap. Assuming ribosomes and RNA polymerases are limiting in gene expression, we show that the numbers of proteins and mRNAs both grow exponentially during the cell cycle and that the concentrations of all mRNAs and proteins achieve cellular homeostasis; the competition between genes for the RNA polymerases makes the transcription rate independent of the genome number. Furthermore, by extending the model to situations in which DNA (mRNA) can be saturated by RNA polymerases (ribosomes) and becomes limiting, we predict a transition from exponential to linear growth of cell volume as the protein-to-DNA ratio increases.
Establishing a quantitative connection between the population growth rate and the generation times of single cells is a prerequisite for understanding evolutionary dynamics of microbes. However, existing theories fail to account for the experimentally observed correlations between mother-daughter generation times that are unavoidable when cell size is controlled for, which is essentially always the case. Here, we study population-level growth in the presence of cell size control and corroborate our theory using experimental measurements of single-cell growth rates. We derive a closed formula for the population growth rate and demonstrate that it only depends on the single-cell growth rate variability, not other sources of stochasticity. Our work provides an evolutionary rationale for the narrow growth rate distributions often observed in nature: when single-cell growth rates are less variable but have a fixed mean, the population will exhibit an enhanced population growth rate as long as the correlations between the mother and daughter cells' growth rates are not too strong.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.